×

Michael’s selection theorem in d-minimal expansions of the real field. (English) Zbl 1499.54096

Summary: Let \( E \subseteq \mathbb{R}^n\). If \( T\) is a lower semi-continuous set-valued map from \( E\) to \( \mathbb{R}^m\) and \( (\mathbb{R},+,\cdot ,T)\) is d-minimal, then there is a continuous function \( f : E \rightarrow \mathbb{R}^m\) definable in \( (\mathbb{R},+,\cdot ,T)\) such that \( f(x) \in T(x)\) for every \( x \in E\). To prove this result, we establish a cell decomposition theorem for d-minimal expansions of the real field.

MSC:

54C65 Selections in general topology
26B05 Continuity and differentiation questions
03C64 Model theory of ordered structures; o-minimality
Full Text: DOI

References:

[1] Aschenbrenner, Matthias; Fischer, Andreas, Definable versions of theorems by Kirszbraun and Helly, Proc. Lond. Math. Soc. (3), 102, 3, 468-502 (2011) · Zbl 1220.03026 · doi:10.1112/plms/pdq029
[2] Aschenbrenner, M.; Thamrongthanyalak, A., Whitney’s Extension Problem in o-minimal structures (2013) · Zbl 1445.03043
[3] Aschenbrenner, Matthias; Thamrongthanyalak, Athipat, Michael’s selection theorem in a semilinear context, Adv. Geom., 15, 3, 293-313 (2015) · Zbl 1391.54015 · doi:10.1515/advgeom-2015-0018
[4] Benyamini, Yoav; Lindenstrauss, Joram, Geometric nonlinear functional analysis. Vol. 1, American Mathematical Society Colloquium Publications 48, xii+488 pp. (2000), American Mathematical Society, Providence, RI · Zbl 0946.46002
[5] van den Dries, Lou; Miller, Chris, Geometric categories and o-minimal structures, Duke Math. J., 84, 2, 497-540 (1996) · Zbl 0889.03025 · doi:10.1215/S0012-7094-96-08416-1
[6] Friedman, Harvey; Miller, Chris, Expansions of o-minimal structures by sparse sets, Fund. Math., 167, 1, 55-64 (2001) · Zbl 0973.03050 · doi:10.4064/fm167-1-4
[7] Friedman, Harvey; Miller, Chris, Expansions of o-minimal structures by fast sequences, J. Symbolic Logic, 70, 2, 410-418 (2005) · Zbl 1089.03031 · doi:10.2178/jsl/1120224720
[8] Kechris, Alexander S., Classical descriptive set theory, Graduate Texts in Mathematics 156, xviii+402 pp. (1995), Springer-Verlag, New York · Zbl 0819.04002 · doi:10.1007/978-1-4612-4190-4
[9] Michael, Ernest, Continuous selections. I, Ann. of Math. (2), 63, 361-382 (1956) · Zbl 0071.15902 · doi:10.2307/1969615
[10] Michael, Ernest, Continuous selections. II, Ann. of Math. (2), 64, 562-580 (1956) · Zbl 0073.17702 · doi:10.2307/1969603
[11] Miller, Chris, Tameness in expansions of the real field. Logic Colloquium ’01, Lect. Notes Log. 20, 281-316 (2005), Assoc. Symbol. Logic, Urbana, IL · Zbl 1081.03037
[12] Miller, C., Definable choice in d-minimal expansions of ordered groups (2006)
[13] Miller, Chris, Expansions of o-minimal structures on the real field by trajectories of linear vector fields, Proc. Amer. Math. Soc., 139, 1, 319-330 (2011) · Zbl 1220.03035 · doi:10.1090/S0002-9939-2010-10506-3
[14] Miller, C.; Thamrongthanyalak, A., D-minimal expansions of the real field have the \(C^p\) zero set property, Proc. Amer. Soc., 146, 12, 5169-5179 (2018) · Zbl 1522.03142
[15] Miller, C.; Tyne, J., Expansions of o-minimal structures by iteration sequences, Notre Dame J. Formal Logic, 47, 1, 93-99 (2006) · Zbl 1107.03040
[16] Munkres, James R., Topology: a first course, xvi+413 pp. (1975), Prentice-Hall, Inc., Englewood Cliffs, N.J. · Zbl 0306.54001
[17] Park, Sehie, Applications of Michael’s selection theorems to fixed point theory, Topology Appl., 155, 8, 861-870 (2008) · Zbl 1145.54043 · doi:10.1016/j.topol.2007.02.017
[18] Zippin, M., Applications of Michael’s continuous selection theorem to operator extension problems, Proc. Amer. Math. Soc., 127, 5, 1371-1378 (1999) · Zbl 0915.46019 · doi:10.1090/S0002-9939-99-04777-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.