×

An efficient numerical scheme for the solution of a stochastic volatility model including contemporaneous jumps in finance. (English) Zbl 07633873

Summary: The model of stochastic volatility with contemporaneous jumps is written for pricing under a partial integro-differential equation (PIDE) having a double integral and a nonsmooth initial value. To tackle this problem, first, a new radial basis function (RBF) as a convex combination of two known RBFs is given. Second, the weighting coefficients of the RBF generated finite difference (FD) method are contributed and the associated error equations are derived. To deal with the integral part, the new idea is to apply an estimate for the unknown function for every cell and do an integration of the density function. The contributed approach is competitive and reduces both the calculational efforts and elapsed time.

MSC:

65-XX Numerical analysis
91-XX Game theory, economics, finance, and other social and behavioral sciences

Software:

Eigtool; Matlab
Full Text: DOI

References:

[1] Abell, M. L. and Braselton, J. P. [2016] Differential Equations with Mathematica, 4th Edition (Academic Press, Cambridge, MA). · Zbl 1347.34001
[2] Achchab, B., Cheikh Maloum, A. and Qadi El Idrissi, A. [2020] “ Pricing European and American options by SPH method,” Int. J. Comput. Methods17, 1950043. · Zbl 07336576
[3] Alós, E. and Ewald, C.-O. [2008] “ Malliavin differentiability of the Heston volatility and applications to option pricing,” Adv. Appl. Probab.40, 144-162. · Zbl 1137.91422
[4] Andrianantenainarinoro, T. R. H. and Rabeherimanana, T. J. [2020] “ WASC stochastic volatility jump,” Financ. Math. Appl.5, 1-36.
[5] Arnoldi, W. E. [1951] “ The principle of minimized iteration in the solution of the matrix eigenvalue problem,” Q. Appl. Math.9, 17-29. · Zbl 0042.12801
[6] Aziz, I. and Khan, I. [2018] “ Numerical solution of diffusion and reaction-diffusion partial integro-differential equations,” Int. J. Comput. Methods15, 1850047. · Zbl 1404.65318
[7] Aziz, I., ul-Islam, S. and Haider, N. [2018] “ Meshless and multi-resolution collocation techniques for steady state interface models,” Int. J. Comput. Methods.15, 1750073. · Zbl 1404.65067
[8] Balajewicz, M. and Toivanen, J. [2017] “ Reduced order models for pricing European and American options under stochastic volatility and jump-diffusion models,” J. Comput. Sci.20, 198-204.
[9] Ballestra, L. V. and Cecere, L. [2016] “ A fast numerical method to price American options under the Bates model,” Comput. Math. Appl.72, 1305-1319. · Zbl 1357.91051
[10] Ballestra, L. V. and Sgarra, C. [2010] “ The evaluation of American options in a stochastic volatility model with jumps: An efficient finite element approach,” Comput. Math. Appl.60, 1571-1590. · Zbl 1202.91313
[11] Bates, D. [1996] “ Jumps and stochastic volatility: The exchange rate processes implicit in Deutsche mark options,” Rev. Financ. Stud.9, 69-107.
[12] Bayona, V., Moscoso, M. and Kindelan, M. [2012] “ Gaussian RBF-FD weights and its corresponding local truncation errors,” Eng. Anal. Bound. Elem.36, 1361-1369. · Zbl 1352.65560
[13] Briani, M., La Chioma, C. and Natalini, R. [2004] “ Convergence of numerical schemes for viscosity solutions to integro-differential degenerate parabolic problems arising in financial theory,” Numer. Math.98, 607-646. · Zbl 1065.65145
[14] Broadie, M. and Kaya, Ö. [2006] “ Exact simulation of stochastic volatility and other affine jump diffusion processes,” Oper. Res.54, 217-231. · Zbl 1167.91363
[15] Caliari, M., Kandolf, P., Ostermann, A. and Rainer, S. [2014] “ Comparison of software for computing the action of the matrix exponential,” BIT Numer. Math.54, 113-128. · Zbl 1290.65042
[16] Chan, R. and Jin, X.-Q. [2007] An Introduction to Iterative Toeplitz Solvers (SIAM, Philadelphia, PA). · Zbl 1146.65028
[17] Duffie, D., Pan, J. and Singleton, K. [2000] “ Transform analysis and asset pricing for affine jump diffusions,” Econometrica68, 1343-1376. · Zbl 1055.91524
[18] Ekström, E. and Tysk, J. [2010] “ The Black-Scholes equation in stochastic volatility models,” J. Math. Anal. Appl.368, 498-507. · Zbl 1188.91200
[19] Emamjomeh, M., Abbasbandy, S. and Rostamy, D. [2020] “ Quasi interpolation of radial basis functions-pseudospectral method for solving nonlinear Klein-Gordon and Sine-Gordon equations,” Iran. J. Numer. Anal. Optim.10, 81-106. · Zbl 1482.65207
[20] Fasshauer, G. E. [2007] Meshfree Approximation Methods with MATLAB (World Scientific, Singapore). · Zbl 1123.65001
[21] Feng, L. and Linetsky, V. [2008] “ Pricing options in jump-diffusion models: An extrapolation approach,” Oper. Res.56, 304-325. · Zbl 1167.91367
[22] Fischer, T. M. [2014] “ On the stability of some algorithms for computing the action of the matrix exponential,” Linear Algebr. Appl.443, 1-20. · Zbl 1282.65054
[23] Georgakopoulos, N. L. [2018] Illustrating Finance Policy with Mathematica (Springer, Cham, Switzerland). · Zbl 1397.00001
[24] Hackbusch, W. [2012] Tensor Spaces and Numerical Tensor Calculus (Springer, Berlin). · Zbl 1244.65061
[25] Haentjens, T. and In ’t Hout, K. J. [2012] “ Alternating direction implicit finite difference schemes for the Heston-Hull-White partial differential equation,” J. Comput. Finance16, 83-110.
[26] Heston, S. L. [1993] “ A closed-form solution for options with stochastic volatility with applications to bond and currency options,” Rev. Financ. Stud.6, 327-343. · Zbl 1384.35131
[27] Hou, A. J., Wang, W., Chen, C. Y. H. and Hardle, W. K. [2020] “ Pricing cryptocurrency options,” J. Financ. Econom.18, 250-279.
[28] In ’t Hout, K. and Foulon, S. [2010] “ ADI finite difference schemes for option pricing in the Heston model with correlation,” Int. J. Numer. Anal. Model.7, 303-320. · Zbl 1499.65276
[29] Itkin, A. [2017] Pricing Derivatives Under Lévy Models: Modern Finite-difference and Pseudo-differential Operators Approach (Birkhäuser, Basel, New York). · Zbl 1419.91002
[30] Jawecki, T., Auzinger, W. and Koch, O. [2020] “ Computable upper error bounds for Krylov approximations to matrix exponentials and associated \(\varphi \)-functions,” BIT Numer. Math.60, 157-197. · Zbl 1432.65053
[31] Kluge, T. [2002] Pricing Derivatives in Stochastic Volatility Models Using the Finite Difference Method, Dipl. Thesis, TU Chemnitz.
[32] Loffeld, J. and Tokman, M. [2013] “ Comparative performance of exponential, implicit, and explicit integrators for stiff systems of ODEs,” J. Comput. Appl. Math.241, 45-67. · Zbl 1258.65067
[33] Marcozzi, M. D., Choi, S. and Chen, C. S. [2001] “ On the use of boundary conditions for variational formulations arising in mathematical finance,” Appl. Math. Comput.124, 197-214. · Zbl 1047.91033
[34] Meyer, G. H. [2015] The Time-discrete Method of Lines for Options and Bonds, A PDE Approach (World Scientific, Hackensack, NJ). · Zbl 1319.91008
[35] Owusu-Ansah, E. d.-G. J., Barnes, B., Donkoh, E. K., Appau, J., Effah, B. and McCall Nartey, M. [2019] “ Quantifying economic risk: An application of extreme value theory for measuring fire outbreaks financial loss,” Financ. Math. Appl.5, 1-12.
[36] Pang, H.-K. and Sun, H.-W. [2014] “ Fast exponential time integration for pricing options in stochastic volatility jump diffusion models,” East Asian J. Appl. Math.4, 52-68. · Zbl 1292.91186
[37] Qiao, Y., Feng, X. and He, Y. [2021] “ A meshless local radial point collocation method for simulating the time-fractional convection-diffusion equations on surfaces,” Int. J. Comput. Methods.18, 2150006. · Zbl 07446905
[38] Salmi, S., Toivanen, J. and von Sydow, L. [2014] “ An IMEX-scheme for pricing options under stochastic volatility models with jumps,” SIAM J. Sci. Comput.36, 817-834. · Zbl 1308.91193
[39] Scott, J. A. [1995] “ An Arnoldi code for computing selected eigenvalues of sparse, real, unsymmetric matrices,”, ACM Trans. Math. Softw.214, 432-475. · Zbl 0888.65041
[40] Taherinasab, Y., Soheili, A. R. and Amini, M. [2021] “ Lower bound approximation of nonlinear basket option with jump-diffusion,” J. Math. Model.9, 31-44. · Zbl 1474.91248
[41] Tolstykh, I. [2000] “ On using RBF-based differencing formulas for unstructured and mixed structured-unstructured grid calculations,” Proc. 16th IMACS World Congress, Lausanne, , Vol. 228, pp. 4606-4624.
[42] Trefethen, L. N. and Embree, M. [2005] Spectra and Pseudospectra, The Behavior of Nonnormal Matrices and Operators (Princeton University Press, Princeton, NJ). · Zbl 1085.15009
[43] Trott, M. [2006] The Mathematica Guidebook for Numerics (Springer, New York). · Zbl 1101.65001
[44] Van Loan, C. [1978] “ Computing integrals involving the matrix exponential,” IEEE Trans. Autom. Control23, 395-404. · Zbl 0387.65013
[45] von Sydow, L., Toivanen, J. and Zhang, C. [2015] “ Adaptive finite differences and IMEX time-stepping to price options under Bates model,” Int. J. Comput. Math.92, 2515-2529. · Zbl 1386.91170
[46] Zhang, Y.-Y., Pang, H.-K., Feng, L.-M. and Jin, X.-Q. [2014] “ Quadratic finite element and preconditioning methods for options pricing in the SVCJ model,” J. Comput. Finance17, 3-30.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.