×

Influence of risk tolerance on long-term investments: a Malliavin calculus approach. (English) Zbl 1498.60333

Summary: This study investigates the influence of risk tolerance on the expected utility in the long run. We estimate the extent to which the expected utility of optimal portfolios is affected by small changes in the risk tolerance. For this purpose, we adopt the Malliavin calculus method and the Hansen-Scheinkman decomposition, through which the expected utility is expressed in terms of the eigenvalues and eigenfunctions of an operator. We conclude that the influence of risk aversion on the expected utility is determined by these eigenvalues and eigenfunctions in the long run.

MSC:

60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)
91G20 Derivative securities (option pricing, hedging, etc.)

References:

[1] Alòs, E.; Ewald, C. O., Malliavin differentiability of the Heston volatility and applications to option pricing, Adv. Appl. Probab., 40, 144-162 (2008) · Zbl 1137.91422
[2] Alòs, E.; Shiraya, K., Estimating the Hurst parameter from short term volatility swaps: A Malliavin calculus approach, Finance Stoch., 23, 423-447 (2019) · Zbl 1411.91536
[3] Alos, E.; León, J. A.; Vives, J., On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility, Finance Stoch., 11, 571-589 (2007) · Zbl 1145.91020
[4] Benhamou, E., Optimal Malliavin weighting function for the computation of the Greeks, Math. Finance, 13, 37-53 (2003) · Zbl 1049.91058
[5] Bi, J.; Cai, J., Optimal investment-reinsurance strategies with state dependent risk aversion and VaR constraints in correlated markets, Insurance, 85, 1-14 (2019) · Zbl 1419.91349
[6] Borovička, J.; Hansen, L. P.; Scheinkman, J. A., Shock elasticities and impulse responses, Math. Financ. Econ., 8, 333-354 (2014) · Zbl 1307.91124
[7] Carassus, L.; Rásonyi, M., Optimal strategies and utility-based prices converge when agents’ preferences do, Math. Oper. Res., 32, 102-117 (2007) · Zbl 1276.91051
[8] Carr, P. and Willems, S., A lognormal type stochastic volatility model with quadratic drift, Available at SSRN 3421304 (2019).
[9] Ćurgus, B.; Read, T. T., Discreteness of the spectrum of second-order differential operators and associated embedding theorems, J. Differential Equations, 184, 526-548 (2002) · Zbl 1029.34070
[10] Delong, Ł., Optimal investment for insurance company with exponential utility and wealth-dependent risk aversion coefficient, Math. Methods Oper. Res., 89, 73-113 (2019) · Zbl 1411.91277
[11] Everitt, W.N., A catalogue of Sturm-Liouville differential equations, in Sturm-Liouville Theory, Springer, 2005, pp. 271-331. · Zbl 1088.34017
[12] Fleming, W. H.; Sheu, S., Risk-sensitive control and an optimal investment model, Math. Finance, 10, 197-213 (2000) · Zbl 1039.93069
[13] Fournié, E.; Lasry, J. M.; Lebuchoux, J.; Lions, P. L.; Touzi, N., Applications of Malliavin calculus to Monte Carlo methods in finance, Finance Stoch., 3, 391-412 (1999) · Zbl 0947.60066
[14] Fulton, C.; Pruess, S.; Xie, Y., The automatic classification of Sturm-Liouville problems, J. Appl. Math. Comput., 124, 149-186 (2005)
[15] Guasoni, P.; Robertson, S., Static fund separation of long-term investments, Math. Finance, 25, 789-826 (2015) · Zbl 1331.91164
[16] Hansen, L. P., Dynamic valuation decomposition within stochastic economies, Econometrica, 80, 911-967 (2012) · Zbl 1274.91309
[17] Hansen, L. P.; Scheinkman, J., Long-term risk: An operator approach, Econometrica, 77, 177-234 (2009) · Zbl 1160.91367
[18] Hansen, L. P.; Scheinkman, J., Pricing growth-rate risk, Finance Stoch., 16, 1-15 (2012) · Zbl 1262.91069
[19] Jeanblanc, M.; Yor, M.; Chesney, M., Mathematical Methods for Financial Markets (2009), Springer Science & Business Media: Springer Science & Business Media, New York · Zbl 1205.91003
[20] Jouini, E.; Napp, C., Convergence of utility functions and convergence of optimal strategies, Finance Stoch., 8, 133-144 (2004) · Zbl 1052.91047
[21] Kallenberg, O., Foundations of Modern Probability (2006), Springer Science & Business Media: Springer Science & Business Media, New York
[22] Karatzas, I.; Shreve, S., Brownian Motion and Stochastic Calculus, 113 (1991), Springer Science & Business Media: Springer Science & Business Media, New York · Zbl 0734.60060
[23] León, J. A.; Navarro, R.; Nualart, D., An anticipating calculus approach to the utility maximization of an insider, Math. Finance, 13, 171-185 (2003) · Zbl 1060.91054
[24] Löcherbach, E., Ergodicity and speed of convergence to equilibrium for diffusion processes (2015).
[25] Malliavin, T.; Paul, A., Stochastic Calculus of Variations in Mathematical Finance (2006), Springer: Springer, Berlin · Zbl 1124.91035
[26] Mocha, M.; Westray, N., The stability of the constrained utility maximization problem: A BSDE approach, SIAM J. Financ. Math., 4, 117-150 (2013) · Zbl 1285.60067
[27] Nualart, D.; Nualart, E., Introduction to Malliavin Calculus, 9 (2018), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 1425.60002
[28] Nutz, M., Risk aversion asymptotics for power utility maximization, Probab. Theory Related Fields, 152, 703-749 (2012) · Zbl 1242.91224
[29] Paravisini, D.; Rappoport, V.; Ravina, E., Risk aversion and wealth: Evidence from person-to-person lending portfolios, Manag. Sci., 63, 279-297 (2017)
[30] Park, H., Sensitivity analysis of long-term cash flows, Finance Stoch., 22, 773-825 (2018) · Zbl 1416.91382
[31] Park, H., Convergence rates of large-time sensitivities with the Hansen-Scheinkman decomposition, Math. Financ. Econ. (2021) · Zbl 1484.91487 · doi:10.1007/s11579-021-00300-6
[32] Park, H. and Sturm, S., A sensitivity analysis of the long-term expected utility of optimal portfolios, Available at SSRN 3401532 (2019).
[33] Protter, P. E., Stochastic Integration and Stochastic Differential Equations (2004), Springer: Springer, Berlin · Zbl 1041.60005
[34] Qin, L.; Linetsky, V., Positive eigenfunctions of Markovian pricing operators: Hansen-Scheinkman factorization, Ross recovery, and long-term pricing, Oper. Res., 64, 99-117 (2016) · Zbl 1338.90447
[35] Robertson, S.; Xing, H., Large time behavior of solutions to semilinear equations with quadratic growth in the gradient, SIAM J. Control Optim., 53, 185-212 (2015) · Zbl 1347.60089
[36] Zariphopoulou, T., A solution approach to valuation with unhedgeable risks, Finance Stoch., 5, 61-82 (2001) · Zbl 0977.93081
[37] Zariphopoulou, T. and Zhou, T., Investment performance measurement under asymptotically linear local risk tolerance, in Handbook of Numerical Analysis, Vol. 15, Elsevier, 2009, pp. 227-253. · Zbl 1180.91279
[38] Zhao, B., Inhomogeneous geometric Brownian motion, Available at SSRN 1429449 (2009).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.