×

Computation of the delta in multidimensional jump-diffusion setting with applications to stochastic volatility models. (English) Zbl 1242.91188

Summary: We study the robustness of options prices to model variation in a multidimensional jump-diffusion framework. In particular, we consider price dynamics in which small variations are modeled either by a Poisson random measure with infinite activity or by a Brownian motion. We consider both European and exotic options and we study their deltas using two approaches: the Malliavin method and the Fourier method. We prove robustness of the deltas to model variation. We apply these results to the study of stochastic volatility models for the underlying and the corresponding options.

MSC:

91G20 Derivative securities (option pricing, hedging, etc.)
60H07 Stochastic calculus of variations and the Malliavin calculus
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)

References:

[1] DOI: 10.1239/jap/996986757 · Zbl 0989.60047 · doi:10.1239/jap/996986757
[2] DOI: 10.1239/aap/1208358890 · Zbl 1137.91422 · doi:10.1239/aap/1208358890
[3] Benth F.E., Stochastics 82 (3) pp 291– (2010)
[4] Benth F.E., Quantum Probability and White Noise Analysis pp 153– (2009)
[5] Benth F.E., Comm. Stochastic Analysis 5 (2) pp 285– (2011)
[6] Benth , F.E. , Di Nunno , G. , and Khedher , A. 2010 . A note on convergence of option prices and their Greeks for Lévy models. E-print, No. 18, November, Department of Mathematics, University of Oslo, Norway. · Zbl 1284.91539
[7] DOI: 10.1111/1467-9868.00282 · Zbl 0983.60028 · doi:10.1111/1467-9868.00282
[8] Caramellino , L. , and Marchisio , V. 2010 . Malliavin Greeks for Complex Asian Options in a Jump Diffusion Setting. Preprint.
[9] Carr P., Journal of Computational Finance 2 pp 61– (1998)
[10] DOI: 10.2307/1911242 · Zbl 1274.91447 · doi:10.2307/1911242
[11] Cont R., Financial Modelling with Jump Processes (2004) · Zbl 1052.91043
[12] DOI: 10.1007/978-3-540-70847-6_8 · doi:10.1007/978-3-540-70847-6_8
[13] Cass , T.R. , and Friz , P.K. 2007 . The Bismut–Elworthy–Li formula for jump-diffusions and applications to Monte Carlo methods in finance. arXiv:math/0604311.
[14] DOI: 10.1016/j.spa.2005.08.002 · Zbl 1081.60040 · doi:10.1016/j.spa.2005.08.002
[15] Di Nunno G., SMF Séminaires et Congrès 16 pp 55– (2008)
[16] DOI: 10.1016/S0022-1236(03)00184-8 · Zbl 1078.60054 · doi:10.1016/S0022-1236(03)00184-8
[17] DOI: 10.1007/978-3-540-70847-6_11 · doi:10.1007/978-3-540-70847-6_11
[18] DOI: 10.1007/s00780-003-0111-6 · Zbl 1098.91050 · doi:10.1007/s00780-003-0111-6
[19] DOI: 10.1111/1467-9965.00062 · Zbl 0980.91020 · doi:10.1111/1467-9965.00062
[20] Folland G.B., Real Analysis–Modern Techniques and their Applications (1984) · Zbl 0549.28001
[21] DOI: 10.1007/s007800050068 · Zbl 0947.60066 · doi:10.1007/s007800050068
[22] DOI: 10.1093/rfs/6.2.327 · Zbl 1384.35131 · doi:10.1093/rfs/6.2.327
[23] Ikeda N., Stochastic Differential Equations and Diffusion Processes (1981) · Zbl 0495.60005
[24] DOI: 10.1007/978-1-4612-0949-2 · doi:10.1007/978-1-4612-0949-2
[25] Matytsin A., Modeling Volatility and Volatility Derivatives (1999)
[26] Nualart D., The Malliavin Calculus and Related Topics (1995) · Zbl 0837.60050 · doi:10.1007/978-1-4757-2437-0
[27] DOI: 10.1111/1467-9965.t01-1-00175 · Zbl 1105.91020 · doi:10.1111/1467-9965.t01-1-00175
[28] Protter P., Stochastic Integration and Differential Equations (2005) · doi:10.1007/978-3-662-10061-5
[29] Petrou E., Electronic Journal of Probability 13 (27) pp 852– (2008)
[30] DOI: 10.1080/15326349708807456 · Zbl 0899.60036 · doi:10.1080/15326349708807456
[31] Sato K.I., Lévy Processes and Infinitely Divisible Distributions (1999) · Zbl 0973.60001
[32] Sepp A., Journal of Computational Finance 11 pp 33– (2008) · doi:10.21314/JCF.2008.185
[33] DOI: 10.1016/j.spa.2006.06.006 · Zbl 1107.60029 · doi:10.1016/j.spa.2006.06.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.