×

Analytical approximations of local-Heston volatility model and error analysis. (English) Zbl 1411.91544

Summary: This paper studies the expansion of an option price (with bounded Lipschitz payoff) in a stochastic volatility model including a local volatility component. The stochastic volatility is a square root process, which is widely used for modeling the behavior of the variance process (Heston model). The local volatility part is of general form, requiring only appropriate growth and boundedness assumptions. We rigorously establish tight error estimates of our expansions, using Malliavin calculus. The error analysis, which requires a careful treatment because of the lack of weak differentiability of the model, is interesting on its own. Moreover, in the particular case of call-put options, we also provide expansions of the Black-Scholes implied volatility that allow to obtain very simple formulas that are fast to compute compared to the Monte Carlo approach and maintain a very competitive accuracy.

MSC:

91G20 Derivative securities (option pricing, hedging, etc.)
60H07 Stochastic calculus of variations and the Malliavin calculus

References:

[1] Alòs, E., & Ewald, C. O. (2008). Malliavin differentiability of the Heston volatility and applications to option pricing. Advances in Applied Probability, 40(1), 144-162. · Zbl 1137.91422
[2] Alòs, E., León, J. A., & Vives, J. (2007). On the short‐time behavior of the implied volatility for jump‐diffusion models with stochastic volatility. Finance and Stochastics, 11, 571-589. · Zbl 1145.91020
[3] Andersen, L. B. G., & Piterbarg, V. V. (2007). Moment explosions in stochastic volatility models. Finance and Stochastics, 11, 29-50. · Zbl 1142.65004
[4] Benhamou, E., Gobet, E., & Miri, M. (2009). Smart expansion and fast calibration for jump diffusion. Finance and Stochastics, 13(4), 563-589. · Zbl 1195.91153
[5] Benhamou, E., Gobet, E., & Miri, M. (2010a). Expansion formulas for European options in a local volatility model. International Journal of Theoretical and Applied Finance, 13(4), 603-634. · Zbl 1205.91153
[6] Benhamou, E., Gobet, E., & Miri, M. (2010b). Time dependent Heston model. SIAM Journal on Financial Mathematics, 1, 289-325. · Zbl 1198.91203
[7] Berestycki, H., Busca, J., & Florent, I. (2004). Computing the implied volatility in stochastic volatility models. Communications on Pure and Applied Mathematics, 10, 1352-1373. · Zbl 1181.91356
[8] Bergomi, L. (2016). Stochastic volatility modeling. Chapman and Hall/CRC Financial Mathematics Series. Boca Raton, FL: Chapman and Hall/CRC. · Zbl 1329.91003
[9] Bergomi, L., & Guyon, J. (2012, May). Stochastic volatility’s orderly smiles. Risk, 60, 66.
[10] Bompis, R. (2013). Stochastic expansion for the diffusion processes and applications to option pricing (PhD thesis). Ecole Polytechnique. Retrieved from http://pastel.archives‐ouvertes.fr/pastel‐00921808 · Zbl 1293.91178
[11] Bompis, R., & Gobet, E. (2012). Asymptotic and non asymptotic approximations for option valuation. In T.Gerstner (ed.) & P.Kloeden (ed.) (Eds.), Recent developments in computational finance: Foundations, algorithms and applications. Hackensack, NJ: World Scientific.
[12] DeMarco, S. (2011). Smoothness and asymptotic estimates of densities for SDEs with locally smooth coefficients and applications to square root‐type diffusions. Annals of Applied Probability, 21(4), 1282-1321. · Zbl 1246.60082
[13] Durrleman, V. (2010). From implied to spot volatilities. Finance and Stochastics, 14, 157-177. · Zbl 1224.91192
[14] Engelmann, B., Koster, F., & Oeltz, D. (2011). Calibration of the Heston local stochastic volatility model: A finite volume scheme. Preprint available at http://www.quantsolutions.de/downloads/HestonLV.pdf
[15] Forde, M., & Jacquier, A. (2009). Small‐time asymptotics for implied volatility under the Heston model. International Journal of Theoretical and Applied Finance, 12(6), 861-876. · Zbl 1203.91290
[16] Forde, M., & Jacquier, A. (2011). Small‐time asymptotics for an uncorrelated local‐stochastic volatility model. Applied Mathematical Finance, 8(6), 517-535. · Zbl 1246.91129
[17] Forde, M., & Pogudin, A. (2013). The large‐maturity smile for the SABR and CEV‐Heston models. International Journal of Theoretical and Applied Finance, 16, 1350047. · Zbl 1290.91160
[18] Fouque, J. P., & Lorig, M. (2011). A fast mean‐reverting correction to Heston stochastic volatility model. SIAM Journal on Financial Mathematics, 2, 221-254. · Zbl 1217.91189
[19] Fouque, J. P., Papanicolaou, G., Sircar, R., & Knut, S. (2011). Multiscale stochastic volatility for equity, interest rate, and credit derivatives. Cambridge, UK: Cambridge University Press. · Zbl 1248.91003
[20] Fouque, J‐P., Papanicolaou, G., Sircar, R., & Solna, K. (2004). Maturity cycles in implied volatility. Finance and Stochastics, 8(4), 451-477. · Zbl 1063.91066
[21] Fournier, N. (2008). Smoothness of the law of some one‐dimensional jumping S.D.E.s with non‐constant rate of jump. Electronic Journal of Probability, 13(6), 135-156. · Zbl 1191.60072
[22] Friz, P. K. (ed.), Gatheral, J. (ed.), Gulisashvili, A. (ed.), Jacquier, A. (ed.), & Teichmann, J. (ed.) (Eds.) (2015). Large deviations and asymptotic methods in finance. Springer Proceedings in Mathematics and Statistics. Berlin: Springer‐Verlag. · Zbl 1322.60003
[23] Glasserman, P. (2003). Monte Carlo methods in Financial Engineering. New York: Springer Verlag.
[24] Gobet, E., & Miri, M. (2014). Weak approximation of averaged diffusion processes. Stochastic Processes and Their Applications, 124, 475-504. · Zbl 1300.60094
[25] Gobet, E., & Pagliarani, S. (2015). Analytical approximations of BSDEs with non‐smooth driver. SIAM Journal on Financial Mathematics, 6, 919-958. · Zbl 1326.65019
[26] Gulisashvili, A. (2012). Analytically tractable stochastic stock price models. Heidelberg: Springer Finance. · Zbl 1264.91007
[27] Hagan, P. S., Kumar, D., Lesniewski, A. S., & Woodward, D. E. (2002, July). Managing smile risk. Willmott Magazine, 84-108.
[28] Henry‐Labordère, P. (2008). Analysis, geometry, and modeling in finance: Advanced methods in option pricing. Boca Raton, FL: Chapman and Hall.
[29] Jordan, R., & Tier, C. (2011). Asymptotic approximations to deterministic and stochastic volatility models. SIAM Journal on Financial Mathematics, 2(1), 935-964. · Zbl 1236.91148
[30] Karatzas, I., & Shreve, S. E. (1991). Brownian motion and stochastic calculus (2nd ed.). New York: Springer Verlag. · Zbl 0734.60060
[31] Lewis, A. L. (2000). Option valuation under stochastic volatility: With mathematica code. Newport Beach, CA: Finance Press. · Zbl 0937.91060
[32] Lewis, A. L. (2007). Geometries and smile asymptotics for a class of stochastic volatility models. Retrived from www.optioncity.net
[33] Lorig, M., Pagliarani, S., & Pascucci, A. (2017, July). Explicit implied volatilities for multifactor local‐stochastic volatility models. Mathematical Finance, 27(3), 926-960. · Zbl 1422.91713
[34] Nualart, D. (2006). Malliavin calculus and related topics (2nd ed.). Berlin: Springer‐Verlag. (With corrections on the webpage of the author) · Zbl 1099.60003
[35] Pagliarani, S., & Pascucci, A. (2013). Local stochastic volatility with jumps: analytical approximations. International Journal of Theoretical and Applied Finance, 16(8), 1350050. · Zbl 1293.91142
[36] Pagliarani, S., & Pascucci, A. (2014). Asymptotic expansions for degenerate parabolic equations. Comptes Rendus Mathematique, 352, 1011-1016. · Zbl 1304.35207
[37] Protter, P. (2004). Stochastic integration and differential equations (2nd ed.). Berlin: Springer Verlag. · Zbl 1041.60005
[38] Takahashi, A., & Yamada, T. (2012). An asymptotic expansion with push‐down of Malliavin weights. SIAM Journal on Financial Mathematics, 3(1), 95-136. · Zbl 1257.91052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.