×

On the dispersive wave dynamics of \(2\times 2\) relaxation systems. (English) Zbl 1355.35131

Summary: We consider hyperbolic conservation laws with relaxation terms. By studying the dispersion relation of the solution of general linearized \(2\times 2\) hyperbolic relaxation systems, we investigate in detail the transition between the wave dynamics of the homogeneous relaxation system and that of the local equilibrium approximation. We establish that the wave velocities of the Fourier components of the solution to the relaxation system will be monotonic functions of a stiffness parameter \(\phi = \varepsilon\xi\), where \(\varepsilon\) is the relaxation time and \(\xi\) is the wave number. This allows us to extend in a natural way the classical concept of the sub-characteristic condition into a more general transitional sub-characteristic condition. We further identify two parameters \(\beta\) and \(\gamma\) that characterize the behavior of such general \(2\times 2\) linear relaxation systems. In particular, these parameters define a natural transition point, representing a value of \(\phi\) where the dynamics will change abruptly from being equilibrium-like to behaving more like the homogeneous relaxation system. Herein, the parameter \(\gamma\) determines the location of the transition point, whereas \(\beta\) measures the degree of smoothness of this transition.

MSC:

35L60 First-order nonlinear hyperbolic equations
35B25 Singular perturbations in context of PDEs
35L40 First-order hyperbolic systems
35L65 Hyperbolic conservation laws
Full Text: DOI

References:

[1] Aw A., J. Appl. Math. 60 pp 916– (2000)
[2] DOI: 10.1016/j.physd.2011.04.022 · Zbl 1223.37109 · doi:10.1016/j.physd.2011.04.022
[3] DOI: 10.1007/s002050050030 · Zbl 0878.35070 · doi:10.1007/s002050050030
[4] DOI: 10.1007/978-1-4612-1039-9 · doi:10.1007/978-1-4612-1039-9
[5] DOI: 10.1002/cpa.3160470602 · Zbl 0806.35112 · doi:10.1002/cpa.3160470602
[6] DOI: 10.1007/BF02104510 · Zbl 0851.35086 · doi:10.1007/BF02104510
[7] DOI: 10.1142/S0218202511005775 · Zbl 1368.76070 · doi:10.1142/S0218202511005775
[8] DOI: 10.1137/0149001 · Zbl 0676.34038 · doi:10.1137/0149001
[9] DOI: 10.1002/cpa.3160480303 · Zbl 0826.65078 · doi:10.1002/cpa.3160480303
[10] Jintang W., Acta Math. Sci. 26 pp 767– (2006) · Zbl 1144.35435 · doi:10.1016/S0252-9602(06)60103-3
[11] DOI: 10.1007/978-1-4612-1054-2 · doi:10.1007/978-1-4612-1054-2
[12] DOI: 10.1016/S0362-546X(98)00203-X · Zbl 0935.35099 · doi:10.1016/S0362-546X(98)00203-X
[13] DOI: 10.1007/BF01210707 · Zbl 0633.35049 · doi:10.1007/BF01210707
[14] DOI: 10.1006/jdeq.1999.3640 · Zbl 0944.35047 · doi:10.1006/jdeq.1999.3640
[15] DOI: 10.1002/(SICI)1097-0312(199608)49:8<795::AID-CPA2>3.0.CO;2-3 · Zbl 0872.35064 · doi:10.1002/(SICI)1097-0312(199608)49:8<795::AID-CPA2>3.0.CO;2-3
[16] R. Natalini, Analysis of Systems of Conservation Laws, Monographs and Surveys in Pure and Applied Mathematics (Chapman & Hall/CRC, Boca Raton, FL, USA, 1999) pp. 128–198.
[17] DOI: 10.1002/9783527610242 · doi:10.1002/9783527610242
[18] Whitham G. B., Linear and Nonlinear Waves (1987)
[19] DOI: 10.1006/jdeq.1998.3584 · Zbl 0942.35110 · doi:10.1006/jdeq.1998.3584
[20] DOI: 10.1017/S0308210500002109 · Zbl 1138.35370 · doi:10.1017/S0308210500002109
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.