×

A new spectral conjugate gradient method for large-scale unconstrained optimization. (English) Zbl 1365.90201

Summary: The spectral conjugate gradient methods, with simple construction and nice numerical performance, are a kind of effective methods for solving large-scale unconstrained optimization problems. In this paper, based on quasi-Newton direction and quasi-Newton condition, and motivated by the idea of spectral conjugate gradient method as well as Y.-H. Dai and C.-X. Kou’s selecting technique for conjugate parameter [SIAM J. Optim. 23, No. 1, 296–320 (2013; Zbl 1266.49065)], a new approach for generating spectral parameters is presented, where a new double-truncating technique, which can ensure both the sufficient descent property of the search directions and the bounded property of the sequence of spectral parameters, is introduced. Then a new associated spectral conjugate gradient method for large-scale unconstrained optimization is proposed. Under either the strong Wolfe line search or the generalized Wolfe line search, the proposed method is always globally convergent. Finally, a large number of comparison numerical experiments on large-scale instances from one thousand to two million variables are reported. The numerical results show that the proposed method is more promising.

MSC:

90C25 Convex programming
90C30 Nonlinear programming

Citations:

Zbl 1266.49065
Full Text: DOI

References:

[1] DOI: 10.1016/j.aml.2006.06.015 · Zbl 1116.90114 · doi:10.1016/j.aml.2006.06.015
[2] DOI: 10.1080/10556780600822260 · Zbl 1270.90068 · doi:10.1080/10556780600822260
[3] DOI: 10.1007/s10589-007-9055-7 · Zbl 1168.90608 · doi:10.1007/s10589-007-9055-7
[4] DOI: 10.1016/j.aml.2007.05.002 · Zbl 1165.90683 · doi:10.1016/j.aml.2007.05.002
[5] Andrei N., Adv. Model. Optim. 10 (1) pp 147– (2008)
[6] DOI: 10.1016/j.cam.2010.05.002 · Zbl 1407.65060 · doi:10.1016/j.cam.2010.05.002
[7] DOI: 10.1016/j.cam.2013.11.001 · Zbl 1278.65086 · doi:10.1016/j.cam.2013.11.001
[8] DOI: 10.1093/imanum/8.1.141 · Zbl 0638.65055 · doi:10.1093/imanum/8.1.141
[9] DOI: 10.1007/s00245-001-0003-0 · Zbl 0990.90134 · doi:10.1007/s00245-001-0003-0
[10] DOI: 10.1145/200979.201043 · Zbl 0886.65058 · doi:10.1145/200979.201043
[11] DOI: 10.1137/100813026 · Zbl 1266.49065 · doi:10.1137/100813026
[12] DOI: 10.1007/s002450010019 · Zbl 0973.65050 · doi:10.1007/s002450010019
[13] DOI: 10.1093/imanum/16.2.155 · Zbl 0851.65049 · doi:10.1093/imanum/16.2.155
[14] DOI: 10.1137/S1052623497318992 · Zbl 0957.65061 · doi:10.1137/S1052623497318992
[15] DOI: 10.1007/s101070100263 · Zbl 1049.90004 · doi:10.1007/s101070100263
[16] Fletcher R., Phys. Test. Textiles. 22 pp 296– (1988)
[17] DOI: 10.1093/comjnl/7.2.149 · Zbl 0132.11701 · doi:10.1093/comjnl/7.2.149
[18] DOI: 10.1137/030601880 · Zbl 1093.90085 · doi:10.1137/030601880
[19] Hager W.W., Pac. J. Optim. 2 pp 35– (2006)
[20] DOI: 10.6028/jres.049.044 · Zbl 0048.09901 · doi:10.6028/jres.049.044
[21] DOI: 10.1016/j.apm.2014.08.008 · doi:10.1016/j.apm.2014.08.008
[22] Jiang X.Z., Math. Num. Sin. 34 pp 103– (2012)
[23] Jiang X.Z., Acta Math. Sin. 57 pp 365– (2014)
[24] DOI: 10.1007/BF00940464 · Zbl 0702.90077 · doi:10.1007/BF00940464
[25] Polak E., Rev. Fr. Inform. Rech. Oper. 16 pp 35– (1969)
[26] DOI: 10.1016/0041-5553(69)90035-4 · Zbl 0229.49023 · doi:10.1016/0041-5553(69)90035-4
[27] DOI: 10.1137/S1052623494266365 · Zbl 0898.90119 · doi:10.1137/S1052623494266365
[28] DOI: 10.1137/1011036 · Zbl 0177.20603 · doi:10.1137/1011036
[29] DOI: 10.1137/1013035 · Zbl 0216.26901 · doi:10.1137/1013035
[30] DOI: 10.1007/s00211-006-0028-z · Zbl 1103.65074 · doi:10.1007/s00211-006-0028-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.