×

Chrono: an open source multi-physics dynamics engine. (English) Zbl 1382.70001

Kozubek, Tomáš (ed.) et al., High performance computing in science and engineering. Second international conference, HPCSE 2015, Soláň, Czech Republic, May 25–28, 2015. Revised selected papers. Cham: Springer (ISBN 978-3-319-40360-1/pbk; 978-3-319-40361-8/ebook). Lecture Notes in Computer Science 9611, 19-49 (2016).
Summary: We provide an overview of a multi-physics dynamics engine called Chrono. Its forte is the handling of complex and large dynamic systems containing millions of rigid bodies that interact through frictional contact. Chrono has been recently augmented to support the modeling of fluid-solid interaction (FSI) problems and linear and nonlinear finite element analysis (FEA). We discuss Chrono’s software layout/design and outline some of the modeling and numerical solution techniques at the cornerstone of this dynamics engine. We briefly report on some validation studies that gauge the predictive attribute of the software solution. Chrono is released as open source under a permissive BSD3 license and available for download on GitHub.
For the entire collection see [Zbl 1337.65004].

MSC:

70-04 Software, source code, etc. for problems pertaining to mechanics of particles and systems
74-04 Software, source code, etc. for problems pertaining to mechanics of deformable solids
76-04 Software, source code, etc. for problems pertaining to fluid mechanics
70Kxx Nonlinear dynamics in mechanics
74Mxx Special kinds of problems in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76T25 Granular flows
65Y05 Parallel numerical computation
Full Text: DOI

References:

[1] The JSON data interchange format. Technical report ECMA-404, ECMA International (2013)
[2] Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics, vol. 35. Springer Science & Business Media, Heidelberg (2008) · Zbl 1173.74001
[3] Adami, S., Hu, X., Adams, N.: A generalized wall boundary condition for smoothed particle hydrodynamics. J. Comput. Phys. 231, 7057–7075 (2012) · doi:10.1016/j.jcp.2012.05.005
[4] Andelfinger, U., Ramm, E.: EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements. Int. J. Numer. Meth. Eng. 36, 1311–1337 (1993) · Zbl 0772.73071 · doi:10.1002/nme.1620360805
[5] Anitescu, M., Cremer, J.F., Potra, F.A.: Formulating 3D contact dynamics problems. Mech. Struct. Mach. 24(4), 405–437 (1996) · doi:10.1080/08905459608905271
[6] Anitescu, M., Tasora, A.: An iterative approach for cone complementarity problems for nonsmooth dynamics. Comput. Optim. Appl. 47, 207–235 (2010) · Zbl 1200.90160 · doi:10.1007/s10589-008-9223-4
[7] Bardet, J.-P.: Experimental Soil Mechanics. Prentice Hall, Englewood Cliffs (1997)
[8] Basa, M., Quinlan, N., Lastiwka, M.: Robustness and accuracy of SPH formulations for viscous flow. Int. J. Numer. Meth. Fluids 60, 1127–1148 (2009) · Zbl 1419.76518 · doi:10.1002/fld.1927
[9] Bathe, K.-J., Dvorkin, E.N.: A four-node plate bending element based on mindlin/reissner plate theory and a mixed interpolation. Int. J. Numer. Meth. Eng. 21, 367–383 (1985) · Zbl 0551.73072 · doi:10.1002/nme.1620210213
[10] Bauchau, O.A.: DYMORE user’s manual. Georgia Institute of Technology, Atlanta (2007)
[11] Betsch, P., Stein, E.: An assumed strain approach avoiding artificial thickness straining for a non-linear 4-node shell element. Commun. Numer. Methods Eng. 11, 899–909 (1995) · Zbl 0833.73051 · doi:10.1002/cnm.1640111104
[12] Buildbot: Buildbot - an open-source framework for automating software build, test, and release. http://buildbot.net/ . Accessed 31 May 2015
[13] Colagrossi, A., Landrini, M.: Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys. 191, 448–475 (2003) · Zbl 1028.76039 · doi:10.1016/S0021-9991(03)00324-3
[14] Crisfield, M.: A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements. Comput. Methods Appl. Mech. Eng. 81, 131–150 (1990) · Zbl 0718.73085 · doi:10.1016/0045-7825(90)90106-V
[15] Crisfield, M.A., Galvanetto, U., Jelenic, G.: Dynamics of 3-D co-rotational beams. Comput. Mech. 20, 507–519 (1997) · Zbl 0904.73076 · doi:10.1007/s004660050271
[16] Dmitrochenko, O., Matikainen, M., Mikkola, A.: The simplest 3-and4-noded fully-parameterized ANCF plate elements. In: ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, pp. 317–322 (2012)
[17] Dmitrochenko, O.N., Pogorelov, D.Y.: Generalization of plate finite elements for absolute nodal coordinate formulation. Multibody Sys.Dyn. 10, 17–43 (2003) · Zbl 1137.74435 · doi:10.1023/A:1024553708730
[18] Dowell, E.H., Traybar, J.J.: An experimental study of the nonlinear stiffness of a rotor blade undergoing flap, lag, and twist deformations, Aerospace and Mechanical Science Report 1194, Princeton University, January 1975
[19] Dowell, E.H., Traybar, J.J.: An experimental study of the nonlinear stiffness of a rotor blade undergoing flap, lag, and twist deformations, Aerospace and Mechanical Science Report 1257, Princeton University, December 1975
[20] Doxygen: Doxygen - A Documentation Generator From Annotated C++ Code. http://www.doxygen.org . Accessed 31 May 2015
[21] Dufva, K., Shabana, A.: Analysis of thin plate structures using the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn. 219, 345–355 (2005) · doi:10.1243/095440805X33162
[22] Felippa, C., Haugen, B.: A unified formulation of small-strain corotational finite elements: I. theory. Comput. Methods Appl. Mech. Eng. 194, 2285–2335 (2005). Computational Methods for Shells · Zbl 1093.74055 · doi:10.1016/j.cma.2004.07.035
[23] Filippov, A.F., Arscott, F.M.: Differential Equations with Discontinuous Righthand Sides: Control Systems, vol. 18. Springer, Heidelberg (1988) · doi:10.1007/978-94-015-7793-9
[24] Fleischmann, J.: DEM-PM contact model with multi-step tangential contact displacement history. Technical report TR-2015-06, Simulation-Based Engineering Laboratory, University of Wisconsin-Madison (2015)
[25] Fleischmann, J.A., Serban, R., Negrut, D., Jayakumar, P.: On the importance of displacement history in soft-body contact models. ASME J. Comput. Nonlinear Dyn. (2015). doi: 10.1115/1.4031197
[26] Gerstmayr, J., Shabana, A.: Analysis of thin beams and cables using the absolute nodal co-ordinate formulation. Nonlinear Dyn. 45, 109–130 (2006) · Zbl 1138.74391 · doi:10.1007/s11071-006-1856-1
[27] Gerstmayr, J., Sugiyama, H., Mikkola, A.: Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. ASME J. Comput. Nonlinear Dyn. 8, 031016-1–031016-12 (2013)
[28] Gilardi, G., Sharf, I.: Literature survey of contact dynamics modelling. Mech. Mach. Theor. 37, 1213–1239 (2002) · Zbl 1062.70553 · doi:10.1016/S0094-114X(02)00045-9
[29] Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics-theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977) · Zbl 0421.76032 · doi:10.1093/mnras/181.3.375
[30] Glocker, C., Pfeiffer, F.: An LCP-approach for multibody systems with planar friction. In: Proceedings of the CMIS 92 Contact Mechanics Int. Symposium, Lausanne, Switzerland, pp. 13–20 (2006)
[31] Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer, Heidelberg (1996) · Zbl 1192.65097 · doi:10.1007/978-3-642-05221-7
[32] Hartl, J., Ooi, J.: Experiments and simulations of direct sheartests: porosity, contact friction and bulk friction. Granular Matter 10, 263–271 (2008) · doi:10.1007/s10035-008-0085-3
[33] Haug, E.J.: Computer-Aided Kinematics and Dynamics of Mechanical Systems Volume-I. Prentice-Hall, Englewood Cliffs (1989)
[34] Heyn, T.: On the modeling, simulation, and visualization of many-body dynamics problems with friction and contact. Ph.D. thesis, Department of Mechanical Engineering, University of Wisconsin–Madison (2013). http://sbel.wisc.edu/documents/TobyHeynThesis_PhDfinal.pdf
[35] Hindmarsh, A., Brown, P., Grant, K., Lee, S., Serban, R., Shumaker, D., Woodward, C.: SUNDIALS: suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw. (TOMS) 31, 363–396 (2005) · Zbl 1136.65329 · doi:10.1145/1089014.1089020
[36] Hu, W., Tian, Q., Hu, H.: Dynamic simulation of liquid-filled flexible multibody systems via absolute nodal coordinate formulation and SPH method. Nonlinear Dyn. 75, 653–671 (2013) · doi:10.1007/s11071-013-1093-3
[37] Kaufman, D.M., Pai, D.K.: Geometric numerical integration of inequality constrained. SIAM J. Sci. Comput. Nonsmooth Hamiltonian Syst. 34, A2670–A2703 (2012) · Zbl 1259.65202 · doi:10.1137/100800105
[38] Kitware: CMake – A cross-platform, open-source build system. http://www.cmake.org . Accessed 31 May 2015
[39] Kruggel-Emden, H., Simsek, E., Rickelt, S., Wirtz, S., Scherer, V.: Review and extension of normal force models for the discrete element method. Powder Technol. 171, 157–173 (2007) · doi:10.1016/j.powtec.2006.10.004
[40] Kruggel-Emden, H., Wirtz, S., Scherer, V.: A study of tangential force laws applicable to the discrete element method (DEM) for materials with viscoelastic or plastic behavior. Chem. Eng. Sci. 63, 1523–1541 (2008) · doi:10.1016/j.ces.2007.11.025
[41] Lee, E., Moulinec, C., Xu, R., Violeau, D., Laurence, D., Stansby, P.: Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method. J. Comput. Phys. 227, 8417–8436 (2008) · Zbl 1256.76054 · doi:10.1016/j.jcp.2008.06.005
[42] Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1024 (1977) · doi:10.1086/112164
[43] Machado, M., Moreira, P., Flores, P., Lankarani, H.M.: Compliant contact force models in multibody dynamics: evolution of the Hertz contact theory. Mech. Mach. Theor. 53, 99–121 (2012) · doi:10.1016/j.mechmachtheory.2012.02.010
[44] Madsen, J.: Validation of a single contact point tire model based on the transient pacejka model in the open-source dynamics software chrono. Technical report, University of Wisconsin - Madison Simulation Based Engineering Lab (2014)
[45] Malvern, L.E.: Introduction to the Mechanics of a Continuous Medium. Prentice Hall, Englewood Cliffs (1969) · Zbl 0181.53303
[46] Masarati, P., Morandini, M., Quaranta, G., Mantegazza, P.: Computational aspects and recent improvements in the open-source multibody analysis software MBDyn. In: Multibody Dynamics, pp. 21–24 (2005)
[47] Mazhar, H., Bollmann, J., Forti, E., Praeger, A., Osswald, T., Negrut, D.: Studying the effect of powder geometry on the selective laser sintering process. In: Society of Plastics Engineers (SPE) ANTEC (2014)
[48] Mazhar, H., Heyn, T., Pazouki, A., Melanz, D., Seidl, A., Bartholomew, A., Tasora, A., Negrut, D.: Chrono: a parallel multi-physics library for rigid-body, flexible-body, and fluid dynamics. Mech. Sci. 4, 49–64 (2013) · doi:10.5194/ms-4-49-2013
[49] Mazhar, H., Heyn, T., Tasora, A., Negrut, D.: Using Nesterov’s method to accelerate multibody dynamics with friction and contact. ACM Trans. Graph. 34, 32 (2015) · Zbl 1333.68258 · doi:10.1145/2735627
[50] Mazhar, H., Osswald, T., Negrut, D.: On the use of computational multibody dynamics for increasing throughput in 3D printing. Addit. Manuf. (2016, accepted) · doi:10.1016/j.addma.2016.05.012
[51] Melanz, D.: On the validation and applications of a parallel flexible multi-body dynamics implementation. M.S. thesis, University of Wisconsin-Madison (2012)
[52] Melanz, D., Tupy, M., Smith, B., Turner, K., Negrut, D.: On the validation of a differential variational inequality approach for the dynamics of granular material-DETC2010-28804. In: Fukuda, S., Michopoulos, J.G. (eds.) Proceedings to the 30th Computers and Information in Engineering Conference, ASME International Design Engineering Technical Conferences (IDETC) and Computers and Information in Engineering Conference (CIE) (2010)
[53] Mikkola, A.: Lugre tire model for HMMWV. Technical report TR-2014-15, Simulation-Based Engineering Laboratory, University of Wisconsin-Madison (2014)
[54] Monaghan, J.J.: On the problem of penetration in particle methods. J. Comput. Phys. 82, 1–15 (1989) · Zbl 0665.76124 · doi:10.1016/0021-9991(89)90032-6
[55] Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68, 1703–1759 (2005) · doi:10.1088/0034-4885/68/8/R01
[56] Morris, J.P., Fox, P.J., Zhu, Y.: Modeling low Reynolds number incompressible flows using SPH. J. Comput. Phys. 136, 214–226 (1997) · Zbl 0889.76066 · doi:10.1006/jcph.1997.5776
[57] MPICH2: High Performance Portable MPI (2013). http://www.mpich.org/
[58] Negrut, D., Heyn, T., Seidl, A., Melanz, D., Gorsich, D., Lamb, D.: Enabling computational dynamics in distributed computing environments using a heterogeneous computing template. In: NDIA Ground Vehicle Systems Engineering and Technology Symposium (2011)
[59] Negrut, D., Rampalli, R., Ottarsson, G., Sajdak, A.: On an implementation of the Hilber-Hughes-Taylor method in the context of index 3 differential-algebraic equations of multibody dynamics (detc2005-85096). J. Comput. Nonlinear Dyn 2, 73–85 (2007) · doi:10.1115/1.2389231
[60] Nemat-Nasser, S.: Plasticity: A Treatise on Finite Deformation of Heterogeneous Inelastic Materials. Cambridge University Press, Cambridge (2004) · Zbl 1073.74001
[61] NVIDIA: CUDA Programming Guide (2015). http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
[62] OpenMP: Specification Standard 4.0 (2013). http://openmp.org/wp/
[63] O’Sullivan, C., Bray, J.D.: Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme. Eng. Comput. 21, 278–303 (2004) · Zbl 1062.74665 · doi:10.1108/02644400410519794
[64] Pazouki, A., Negrut, D.: Numerical investigation of microfluidic sorting of microtissues. Comput. Math. Appl. (2015, accepted) · Zbl 1357.92043 · doi:10.1016/j.camwa.2015.09.031
[65] Pazouki, A., Negrut, D.: A numerical study of the effect of particle properties on the radial distribution of suspensions in pipe flow. Comput. Fluids 108, 1–12 (2015) · Zbl 1390.76895 · doi:10.1016/j.compfluid.2014.11.027
[66] Pazouki, A., Serban, R., Negrut, D.: A high performance computing approach to the simulation of fluid-solid interaction problems with rigid and flexible components. Arch. Mech. Eng. 61, 227–251 (2014) · doi:10.2478/meceng-2014-0014
[67] Pazouki, A., Serban, R., Negrut, D.: A Lagrangian-Lagrangian framework for the simulation of rigid and deformable bodies in fluid. In: Terze, Z. (ed.) Multibody Dynamics. Computaional Methods in Applied Sciences, pp. 33–52. Springer International Publishing, Heidelberg (2014) · doi:10.1007/978-3-319-07260-9_2
[68] Pazouki, A., Song, B., Negrut, D.: Boundary condition enforcing methods for smoothed particle hydrodynamics. Technical report: TR-2015-08 (2015) · Zbl 1390.76895
[69] Rankin, C., Nour-Omid, B.: The use of projectors to improve finite element performance. Comput. Struct. 30, 257–267 (1988) · Zbl 0668.73054 · doi:10.1016/0045-7949(88)90231-3
[70] Project Chrono: Chrono: An Open Source Framework for thePhysics-Based Simulation of Dynamic Systems. http://www.projectchrono.org . Accessed 7 Feb 2015
[71] Project Chrono: Chrono: An OpenSource Framework for the Physics-Based Simulation of Dynamic Systems. https://github.com/projectchrono/chrono . Accessed 15 Aug 2015
[72] Schwertassek, R., Wallrapp, O., Shabana, A.A.: Flexible multibody simulation and choice of shape functions. Nonlinear Dyn. 20, 361–380 (1999) · Zbl 0960.70006 · doi:10.1023/A:1008314826838
[73] Serban, R., Mazhar, H., Melanz, D., Jayakumar, P., Negrut, D.: A comparative study of penalty and complementarity methods for handling frictional contact in large multibody dynamics problems. In: 17th U.S. National Congress on Theoretical and Applied Mechanics (USNC-TAM) (2014)
[74] Shabana, A.A.: Dynamics of Multibody Systems, 4th edn. Cambridge University Press, Cambridge (2013) · Zbl 1291.70002 · doi:10.1017/CBO9781107337213
[75] Shotwell, R.: A comparison of chrono::engines primitive jointswith ADAMS results. Technical report TR-2012-01, Simulation-Based Engineering Laboratory, University of Wisconsin-Madison (2012). http://sbel.wisc.edu/documents/TR-2012-01.pdf
[76] Silbert, L.E., Ertaş, D., Grest, G.S., Halsey, T.C., Levine, D., Plimpton, S.J.: Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64, 051302 (2001) · doi:10.1103/PhysRevE.64.051302
[77] Simo, J.C., Rifai, M.: A class of mixed assumed strain methods and the method of incompatible modes. Int. J. Numer. Meth. Eng. 29, 1595–1638 (1990) · Zbl 0724.73222 · doi:10.1002/nme.1620290802
[78] Simulation-Based Engineering Lab (SBEL): Movies, Physics-Based Modeling and Simulation. http://sbel.wisc.edu/Animations . Accessed 09 June 2015
[79] Simulation-Based Engineering Lab (SBEL): Chrono Vimeo Movies. https://vimeo.com/uwsbel . Accessed 09 June 2015
[80] Sin, F.S., Schroeder, D., Barbič, J.: Vega: non-linear FEM deformable object simulator. Comput. Graph. Forum 32, 36–48 (2013). Wiley Online Library · doi:10.1111/j.1467-8659.2012.03230.x
[81] Stewart, D.E.: Rigid-body dynamics with friction and impact. SIAM Rev. 42(1), 3–39 (2000) · Zbl 0962.70010 · doi:10.1137/S0036144599360110
[82] Stewart, D.E., Trinkle, J.C.: An implicit time-stepping scheme for rigid-body dynamics with inelastic collisions and Coulomb friction. Int. J. Numer. Meth. Eng. 39, 2673–2691 (1996) · Zbl 0882.70003 · doi:10.1002/(SICI)1097-0207(19960815)39:15<2673::AID-NME972>3.0.CO;2-I
[83] Sugiyama, H., Yamashita, H., Jayakumar, P.: Right on tracks - an integrated tire model for ground vehicle simulation. Tire Technol. Int. 67, 52–55 (2014)
[84] Sugiyama, H., Yamashita, H., Jayakumar, P.: ANCF tire models for multibody ground vehicle simulation. In: Proceedings of International Tyre Colloquium: Tyre Models for Vehicle Dynamics Analysis, 25–28 June 2015
[85] Swegle, J., Hicks, D., Attaway, S.: Smoothed particle hydrodynamics stability analysis. J. Comput. Phys. 116, 123–134 (1995) · Zbl 0818.76071 · doi:10.1006/jcph.1995.1010
[86] Tasora, A., Anitescu, M.: A complementarity-based rolling friction model for rigid contacts. Meccanica 48, 1643–1659 (2013) · Zbl 1293.70052 · doi:10.1007/s11012-013-9694-y
[87] Tasora, A., Anitescu, M., Negrini, S., Negrut, D.: A compliant visco-plastic particle contact model based on differential variational inequalities. Int. J. Non-Linear Mech. 53, 2–12 (2013) · doi:10.1016/j.ijnonlinmec.2013.01.010
[88] Taylor, M., Serban, R.: Validation of basic modeling elements in chrono. Technical report TR-2015-05, Simulation-BasedEngineering Laboratory, University of Wisconsin-Madison (2015). http://sbel.wisc.edu/documents/TR-2015-05.pdf
[89] Trinkle, J., Pang, J.-S., Sudarsky, S., Lo, G.: On dynamic multi-rigid-body contact problems with Coulomb friction. Zeitschrift fur angewandte Mathematik und Mechanik 77, 267–279 (1997) · Zbl 0908.70008 · doi:10.1002/zamm.19970770411
[90] Uehara, J.S., Ambroso, M.A., Ojha, R.P., Durian, D.J.: Erratum: low-speed impact craters in loose granular media [phys. rev. lett.prltao0031-9007 90, 194301 (2003)]. Phys. Rev. Lett. 91, 149902 (2003) · doi:10.1103/PhysRevLett.91.149902
[91] Yamashita, H., Matsutani, Y., Sugiyama, H.: Longitudinal tire dynamics model for transient braking analysis: ANCF-LuGre tire model. J. Comput. Nonlinear Dyn. 10, 031003 (2015) · doi:10.1115/1.4028335
[92] Yamashita, H., Valkeapää, A.I., Jayakumar, P., Sugiyama, H.: Continuum mechanics based bilinear shear deformable shell element using absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 10, 051012 (2015) · doi:10.1115/1.4028657
[93] Zhang, H.P., Makse, H.A.: Jamming transition in emulsions and granular materials. Phys. Rev. E 72, 011301 (2005) · doi:10.1103/PhysRevE.72.011301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.