×

Unified primal-dual active set method for dynamic frictional contact problems. (English) Zbl 07611945


MSC:

70F40 Problems involving a system of particles with friction
70-08 Computational methods for problems pertaining to mechanics of particles and systems
70E55 Dynamics of multibody systems
35Q70 PDEs in connection with mechanics of particles and systems of particles

References:

[1] Laursen, T. A., Computational Contact and Impact Mechanics: Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis (2013), Berlin: Springer, Berlin · Zbl 0996.74003
[2] Wriggers, P.; Zavarise, G., Computational Contact Mechanics. Encyclopedia of Computational Mechanics (2004)
[3] Brogliato, B., Impacts in Mechanical Systems: Analysis and Modelling (2000), Berlin: Springer, Berlin · Zbl 0972.00062 · doi:10.1007/3-540-45501-9
[4] Acary, V.; Brogliato, B., Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics (2008), Berlin: Springer, Berlin · Zbl 1173.74001 · doi:10.1007/978-3-540-75392-6
[5] Moreau, J. J., Application of convex analysis to some problems of dry friction, Trends in Applications of Pure Mathematics to Mechanics, 263-280 (1977), London: Pitman, London · Zbl 0433.73096
[6] Moreau, J. J., Unilateral contact and dry friction in finite freedom dynamics, Nonsmooth Mechanics and Applications, 1-82 (1988), Berlin: Springer, Berlin · Zbl 0703.73070 · doi:10.1007/978-3-7091-2624-0
[7] Monteiro Marques, M. D.P., Differential Inclusions in Nonsmooth Mechanical Problem: Shocks and Dry Friction (1993), Basel: Springer, Basel · Zbl 0802.73003 · doi:10.1007/978-3-0348-7614-8
[8] Jean, M., The non-smooth contact dynamics method, Comput. Methods Appl. Mech. Eng., 177, 3-4, 235-257 (1999) · Zbl 0959.74046 · doi:10.1016/S0045-7825(98)00383-1
[9] Moreau, J. J., Numerical aspects of the sweeping process, Comput. Methods Appl. Mech. Eng., 177, 3-4, 329-349 (1999) · Zbl 0968.70006 · doi:10.1016/S0045-7825(98)00387-9
[10] Jean, M.; Moreau, J. J., Unilaterality and dry friction in the dynamics of rigid body collections, 1st Contact Mechanics International Symposium, 31-48 (1992)
[11] Dubois, F.; Acary, V.; Jean, M., The contact dynamics method: a nonsmooth story, C. R., Méc., 346, 3, 247-262 (2018) · doi:10.1016/j.crme.2017.12.009
[12] Moreau, J. J., Some numerical methods in multibody dynamics: application to granular materials, Eur. J. Mech. A, Solids, 13, 4, 93-114 (1994) · Zbl 0815.73009
[13] de Saxcé, G.; Feng, Z.-Q., New inequality and functional for contact with friction: the implicit standard material approach, J. Struct. Mech., 19, 3, 301-325 (1991)
[14] Fortin, J.; Millet, O.; de Saxcé, G., Numerical simulation of granular materials by an improved discrete element method, Int. J. Numer. Methods Eng., 62, 5, 639-663 (2005) · Zbl 1060.74666 · doi:10.1002/nme.1209
[15] Feng, Z.-Q.; Joli, P.; Cros, J.-M.; Magnain, B., The bi-potential method applied to the modeling of dynamic problems with friction, Comput. Mech., 36, 5, 375-383 (2005) · Zbl 1138.74374 · doi:10.1007/s00466-005-0663-8
[16] Joli, P.; Feng, Z.-Q., Uzawa and Newton algorithms to solve frictional contact problems within the bi-potential framework, Int. J. Numer. Methods Eng., 73, 3, 317-330 (2008) · Zbl 1159.74040 · doi:10.1002/nme.2073
[17] Dumont, S., On enhanced descent algorithms for solving frictional multicontact problems: application to the discrete element method, Int. J. Numer. Methods Eng., 93, 11, 1170-1190 (2013) · Zbl 1352.74347 · doi:10.1002/nme.4424
[18] Kikuchi, N.; Oden, J. T., Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods (1988) · Zbl 0685.73002 · doi:10.1137/1.9781611970845
[19] Oden, J. T.; Kim, S. J., Interior penalty methods for finite element approximations of the Signorini problem in elastostatics, Comput. Math. Appl., 8, 1, 35-56 (1986) · Zbl 0473.73077 · doi:10.1016/0898-1221(82)90038-4
[20] Alart, P.; Curnier, A., A mixed formulation for frictional contact problems prone to Newton like solution methods, Comput. Methods Appl. Mech. Eng., 92, 3, 353-375 (1991) · Zbl 0825.76353 · doi:10.1016/0045-7825(91)90022-X
[21] Raous, M.; Chabrand, P.; Lebon, F., Numerical methods for solving unilateral contact problem with friction, J. Theor. Appl. Mech., 7, 111-128 (1988) · Zbl 0679.73048
[22] Joli, P.; Feng, Z.-Q., Uzawa and Newton algorithms to solve frictional contact problems within the bi-potential framework, Int. J. Numer. Methods Eng., 73, 3, 317-330 (2008) · Zbl 1159.74040 · doi:10.1002/nme.2073
[23] Chouly, F., An adaptation of Nitsche’s method to the Tresca friction problem, J. Math. Anal. Appl., 411, 1, 329-339 (2014) · Zbl 1311.74112 · doi:10.1016/j.jmaa.2013.09.019
[24] Chouly, F.; Hild, P.; Renard, Y., A Nitsche finite element method for dynamic contact: 1. Space semi-discretization and time-marching schemes, ESAIM: Math. Model. Numer. Anal., 49, 2, 481-502 (2015) · Zbl 1311.74113 · doi:10.1051/m2an/2014041
[25] Chouly, F.; Fabre, M.; Hild, P.; Mlika, R.; Pousin, J.; Renard, Y., An overview of recent results on Nitsche’s method for contact problems, Geometrically Unfitted Finite Element Methods and Applications, 93-141 (2017) · Zbl 1390.74003 · doi:10.1007/978-3-319-71431-8_4
[26] Hintermüller, M.; Kovtunenko, V. A.; Kunisch, K., Semismooth Newton methods for a class of unilaterally constrained variational problems, Universität Graz/Technische Universität Graz. SFB F003-Optimierung und Kontrolle (2003) · Zbl 1083.49023
[27] Hintermüller, M.; Ito, K.; Kunisch, K., The primal-dual active set strategy as a semismooth Newton method, SIAM J. Optim., 13, 3, 865-888 (2002) · Zbl 1080.90074 · doi:10.1137/S1052623401383558
[28] Hintermüller, M.; Kovtunenko, V. A.; Kunisch, K., Obstacle problems with cohesion: a hemivariational inequality approach and its efficient numerical solution, SIAM J. Optim., 21, 2, 491-516 (2011) · Zbl 1228.49012 · doi:10.1137/10078299
[29] Hüeber, S.; Stadler, G.; Wohlmuth, B. I., A primal-dual active set algorithm for three-dimensional contact problems with Coulomb friction, SIAM J. Sci. Comput., 30, 2, 572-596 (2008) · Zbl 1158.74045 · doi:10.1137/060671061
[30] Hüeber, S.; Wohlmuth, B. I., A primal-dual active set strategy for non-linear multibody contact problems, Comput. Methods Appl. Mech. Eng., 194, 27-29, 3147-3166 (2005) · Zbl 1093.74056 · doi:10.1016/j.cma.2004.08.006
[31] Koziara, T.; Bićanić, N., Semismooth Newton method for frictional contact between pseudo-rigid bodies, Comput. Methods Appl. Mech. Eng., 197, 33-40, 2763-2777 (2008) · Zbl 1194.74527 · doi:10.1016/j.cma.2008.01.006
[32] Sharaf, I.M.: An active set algorithm for a class of linear complementarity problems arising from rigid body dynamics. Pak. J. Stat. Oper. Res. 339-352 (2016) · Zbl 1509.90210
[33] Barboteu, M.; Dumont, S., A primal-dual active set method for solving multi-rigid-body dynamic contact problems, Math. Mech. Solids, 23, 3, 489-503 (2018) · Zbl 1440.74243 · doi:10.1177/1081286517733505
[34] Abide, S.; Barboteu, M.; Cherkaoui, S.; Danan, D.; Dumont, S., Inexact primal-dual active set method for solving elastodynamic frictional contact problems, Comput. Math. Appl., 82, 36-59 (2021) · Zbl 1524.74364 · doi:10.1016/j.camwa.2020.11.017
[35] Abide, S.; Barboteu, M.; Danan, D., Analysis of two active set type methods to solve unilateral contact problems, Appl. Math. Comput., 284, 286-307 (2016) · Zbl 1410.74048
[36] Abide, S.; Barboteu, M.; Cherkaoui, S.; Dumont, S., A semi-smooth Newton and primal-dual active set method for non-smooth contact dynamics, Comput. Methods Appl. Mech. Eng., 387 (2021) · Zbl 1507.70024 · doi:10.1016/j.cma.2021.114153
[37] Moreau, J. J.; Del Piero, G.; Maceri, F., Standard inelastic shocks and the dynamics of unilateral constraints, Unilateral Problems in Structural Analysis, 173-221 (1985), Berlin: Springer, Berlin · Zbl 0619.73115 · doi:10.1007/978-3-7091-2632-5_9
[38] Jourdan, F.; Alart, P.; Jean, M., A Gauss-Seidel like algorithm to solve frictional contact problems, Comput. Methods Appl. Mech. Eng., 155, 1-2, 31-47 (1998) · Zbl 0961.74080 · doi:10.1016/S0045-7825(97)00137-0
[39] Renouf, M.; Alart, P., Conjugate gradient type algorithms for frictional multi-contact problems: applications to granular materials, Comput. Methods Appl. Mech. Eng., 194, 18-20, 2019-2041 (2005) · Zbl 1091.74053 · doi:10.1016/j.cma.2004.07.009
[40] Ciarlet, P. G.; Geymonat, G., Sur les lois de comportement en élasticité non-linéaire compressible, C. R. Acad. Sci., 295, 423-426 (1982) · Zbl 0497.73017
[41] Cundall, P. A.; Strack, O. D.L., A discrete numerical model for granular assemblies, Geotechnique, 29, 1, 47-65 (1979) · doi:10.1680/geot.1979.29.1.47
[42] Garg, R., Galvin, J., Li, T., Pannala, S.: Documentation of open-source MFIX-DEM software for gas-solids flows. From https://mfix.netl.doe.gov/download/mfix/mfix_current_documentation/dem_doc_2012-1.pdf (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.