×

Stability properties of Radon measure-valued solutions for a class of nonlinear parabolic equations under Neumann boundary conditions. (English) Zbl 1509.35143

Summary: In this paper, we address the existence, uniqueness, decay estimates, and the large-time behavior of the Radon measure-valued solutions for a class of nonlinear strongly degenerate parabolic equations involving a source term under Neumann boundary conditions with bounded Radon measure as initial data. \[ \begin{cases} u_t = \Delta\psi(u)+h(t)f(x, t) &\quad\text{in } \Omega\times(0, T), \\ \frac{\partial\psi(u)}{\partial\eta} = g(u) &\quad\text{on } \partial\Omega\times(0, T), \\ u(x, 0) = u_0(x) &\quad\text{in } \Omega, \end{cases} \] where \(T >0\), \(\Omega\subset \mathbb{R}^N\) \((N\ge 2)\) is an open bounded domain with smooth boundary \(\partial\Omega\), \(\eta\) is an outward normal vector on \(\partial\Omega \). The initial value data \(u_0\) is a nonnegative bounded Radon measure on \(\Omega \), the function \(f\) is a solution of the linear inhomogeneous heat equation under Neumann boundary conditions with measure data, and the functions \(\psi\), \(g\) and \(h\) satisfy the suitable assumptions.

MSC:

35K65 Degenerate parabolic equations
35K59 Quasilinear parabolic equations
35K61 Nonlinear initial, boundary and initial-boundary value problems for nonlinear parabolic equations
35B40 Asymptotic behavior of solutions to PDEs
28A33 Spaces of measures, convergence of measures
28A50 Integration and disintegration of measures

References:

[1] J. L. Vázquez, Measure-valued solutions and the phenomenon of blow-down in logarithmic diffusion, <i>J. Math. Anal. Appl.</i>, <b>352</b> (2009), 515-547. · Zbl 1197.35153
[2] S, Fundamental solutions of parabolic differential equations and boundary value problems, Jnp. J. Math., 27, 55-102 (1957) · Zbl 0092.31101
[3] S, A boundary value problem of partial differential equations of parabolic type, Duke Math. J., 24, 299-312 (1957) · Zbl 0084.30202
[4] C, On the asymptotic behavior of solutions of parabolic equations, Czechoslovak Math. J., 33, 262-285 (1983) · Zbl 0534.35051 · doi:10.21136/CMJ.1983.101876
[5] C. V. Pao, <i>Nonlinear Parabolic and Elliptic Equations</i>, New York: Plenum Press, 1992. · Zbl 0777.35001
[6] M, Pseudo-parabolic regularization of forward-backward parabolic equations: Power-type nonlinearities, J. Reine Angew. Math., 712, 51-80 (2016) · Zbl 1377.35164
[7] M, Pseudo-parabolic regularization of forward-backward parabolic equations: A logarithmic nonlinearity, Anal. PDE, 6, 1719-1754 (2013) · Zbl 1284.35121 · doi:10.2140/apde.2013.6.1719
[8] L. C. Evance, Partial differential equations, <i>Graduate Studies in Mathematics</i>, American Mathematical Society, Providence, R.I., 2010. · Zbl 1194.35001
[9] M, Radon measure-valued solutions for a class of quasilinear parabolic equations, Arch. Ration. Mech. Anal., 210, 713-772 (2013) · Zbl 1288.35305 · doi:10.1007/s00205-013-0666-0
[10] M, Radon measure-valued solutions of nonlinear strongly degenerate parabolic equations, Calc. Var. Partial Dif., 51, 401-437 (2014) · Zbl 1323.35061 · doi:10.1007/s00526-013-0680-y
[11] F, Degenerate regularization of forward-backward parabolic equations: The regularized problem, Arch. Ration. Mech. Anal., 204, 85-139 (2012) · Zbl 1255.35149 · doi:10.1007/s00205-011-0470-7
[12] L, Measure-valued solutions of nonlinear parabolic equations with logarithmic diffusion, J. Evol. Equ., 15, 609-645 (2015) · Zbl 1329.35176 · doi:10.1007/s00028-015-0275-5
[13] M, Radon measure-valued solutions for some quasilinear degenerate elliptic equations, Ann. Mat. Pura Appl., 194, 495-532 (2015) · Zbl 1315.35110 · doi:10.1007/s10231-013-0386-y
[14] F, Approximation of diffuse measures for parabolic capacities, C. R. Math. Acad. Sci. Paris, 346, 161-166 (2008) · Zbl 1141.35313 · doi:10.1016/j.crma.2007.12.002
[15] J, Parabolic capacity and soft measures for nonlinear equations, Potential Anal., 19, 99-161 (2003) · Zbl 1017.35040 · doi:10.1023/A:1023248531928
[16] F, Diffuse measures and nonlinear parabolic equations, J. Evol. Equ., 11, 861-905 (2011) · Zbl 1243.35108 · doi:10.1007/s00028-011-0115-1
[17] J. L. Vázquez, <i>The Porous Medium Equation: Mathematical Theory</i>, Oxford: Oxford Mathematical Monographs, 2007. · Zbl 1107.35003
[18] J, Local existence and uniqueness of solutions of degenerate parabolic equations, Commun. Part. Diff. Eq., 16, 105-143 (1991) · Zbl 0738.35033 · doi:10.1080/03605309108820753
[19] E, Continuity of weak solutions to a general porous medium equation, Indiana Univ. Math. J., 32, 83-118 (1983) · Zbl 0526.35042 · doi:10.1512/iumj.1983.32.32008
[20] J, Global existence and blow-up solutions for quasilinear reaction-diffusion equations with a gradient term, Appl. Math. Lett., 24, 936-942 (2011) · Zbl 1213.35130 · doi:10.1016/j.aml.2010.12.052
[21] J. L. Lions, <i>Quelques Méthodes de Résolutions des Problèmes aux Limites non Linéaires</i>, Paris: Dunod., French, 1969. · Zbl 0189.40603
[22] O. A. Ladyženskaja, V. A. Solonnikov, N. N. Ural’ceva, <i>Linear and Quasilinear Equations of Parabolic Type</i>, Translations of Mathematical Monographs, American Mathematical Society, Providence, R.I., <b>23</b> (1968). · Zbl 0174.15403
[23] J, Compact sets in the space \(L^p(0, T;B)\), Ann. Mat. Pura Appl., 146, 65-96 (1987) · Zbl 0629.46031
[24] L. C. Evans, R. F. Gariepy, <i>Measure Theory and Fine Properties of Functions</i>, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. · Zbl 0804.28001
[25] M, Existence of solutions to a class of weakly coercive diffusion equations with singular initial data, Adv. Differential Eq., 22, 893-963 (2017) · Zbl 1377.35167
[26] L, \(W^{1, 1}(\Omega)\) Solutions of nonlinear problems with nonhomogeneous Neumann boundary conditions, Milan J. Math., 83, 279-293 (2015) · Zbl 1336.35163 · doi:10.1007/s00032-015-0235-0
[27] E. DiBenedetto, <i>Degenerate Parabolic Equations</i>, Universitext, New York: Springer-Verlag, 1993. · Zbl 0794.35090
[28] H, Quasilinear parabolic system under nonlinear boundary conditions, Arch. Rational Mech. Anal., 92, 53-192 (1986) · Zbl 0596.35061
[29] H, Parabolic evolution equations and nonlinear boundary conditions, J. Differ. Equations, 73, 201-269 (1988) · Zbl 0658.34011
[30] L, Remarks on Hölder continuity for parabolic equations and convergence to global attractors, Nonlinear Anal., 41, 921-941 (2000) · Zbl 0969.35034 · doi:10.1016/S0362-546X(98)00319-8
[31] V, Porous medium type equations with measure data and potential estimates, SIAM J. Math. Anal., 45, 3283-3330 (2013) · Zbl 1288.35311 · doi:10.1137/130925323
[32] V, Pointwise estimates for solutions to the porous medium equation with measure as a forcing term, Israel J. Math., 194, 259-275 (2013) · Zbl 1357.35198 · doi:10.1007/s11856-012-0098-9
[33] U. Gianazza, Degenerate and singular porous medium type equations with measure data, <i>Elliptic and Parabolic Equations</i>, <b>119</b> (2015), 139-158. · Zbl 1328.35262
[34] H, Semi-linear second-order elliptic equations in \(L^1\), J. Math. Soc. Japan, 25, 565-590 (1973) · Zbl 0278.35041
[35] J. R. Cannon, <i>The One-dimensional Heat Equations</i>, Encyclopedia of Mathematics and its Applications, Addison-Wesley Publishing Company, <b>23</b> (1984). · Zbl 0567.35001
[36] G, Extended divergence measure fields and the Euler equations for gas dynamic, Comm. Math, Phys., 236, 251-280 (2003) · Zbl 1036.35125 · doi:10.1007/s00220-003-0823-7
[37] B, Uniqueness for inhomogeneous Dirichlet problem for elliptic-parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A, 137, 1119-1133 (2007) · Zbl 1134.35081 · doi:10.1017/S0308210505001290
[38] L, Existence of solutions and regularizing effect for some elliptic nonlinear problems with nonhomogeneous Neumann boundary conditions, Rev. Mat. Complut., 28, 263-280 (2015) · Zbl 1319.35061 · doi:10.1007/s13163-014-0162-6
[39] F, Degenerate elliptic equations with nonlinear boundary conditions and measure data, Ann. Sc. Norm. Super. Pisa. Cl. Sci., 8, 769-803 (2009) · Zbl 1205.35120
[40] F, Quasilinear elliptic and parabolic equations in \(L^1\) with nonlinear boundary conditions, Adv. Math. Sci. Appl., 7, 183-213 (1997) · Zbl 0882.35048
[41] M, Radon measure-valued solutions for some quasilinear degenerate elliptic equations, Ann. Mat. Pura Appl., 194, 495-532 (2015) · Zbl 1315.35110 · doi:10.1007/s10231-013-0386-y
[42] S, The fundamental solution of the parabolic equation in a differentiable manifold. II, Osaka Math. J., 6, 167-185 (1954) · Zbl 0057.32603
[43] A. Friedman, <i>Partial Differential Equations of Parabolic Type</i>, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1964. · Zbl 0144.34903
[44] M. Giaquinta, G. Modica, J. Souček, <i>Cartesian Currents in the Calculus of Variations. I. Cartesian Currents</i>, Berlin: Springer-Verlag, 1998. · Zbl 0914.49001
[45] M, Radon measure-valued solutions of first order scalar conservation laws, Adv. Nonlinear Anal., 9, 65-107 (2020) · Zbl 1435.35243
[46] Q, Radon Measure-valued solutions for nonlinear strongly degenerate parabolic equations with measure data, Eur. J. Pure Appl. Math., 14, 204-233 (2021) · doi:10.29020/nybg.ejpam.v14i1.3877
[47] U, On the computation of measure-valued solutions, Acta Numer., 25, 567-679 (2016) · Zbl 1382.76001 · doi:10.1017/S0962492916000088
[48] S, Computation of measure-valued solutions for the incompressible Euler equations, Math. Models Methods Appl. Sci., 25, 2043-2088 (2015) · Zbl 1404.76186 · doi:10.1142/S0218202515500529
[49] J. Droniou, T. Gallouët, R. Herbin, A finite volume scheme for a noncoercive elliptic equation with measure data, <i>SIAM J. Numer. Anal.</i>, <b>41</b> (2003), 1997-2031. · Zbl 1058.65127
[50] R, Convergence of a finite volume scheme for nonlinear degenerate parabolic equations, Numer. Math., 92, 41-82 (2002) · Zbl 1005.65099 · doi:10.1007/s002110100342
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.