×

Stability and bifurcation analysis for a predator-prey model with discrete and distributed delay. (English) Zbl 1296.34165

Summary: We propose a two-dimensional predatory-prey model with discrete and distributed delay. By the use of a new variable, the original two-dimensional system transforms into an equivalent three-dimensional system. Firstly, we study the existence and local stability of equilibria of the new system. And, by choosing the time delay \(\tau\) as a bifurcation parameter, we show that Hopf bifurcation can occur as the time delay \(\tau\) passes through some critical values. Secondly, by the use of normal form theory and central manifold argument, we establish the direction and stability of Hopf bifurcation. At last, an example with numerical simulations is provided to verify the theoretical results. In addition, some simple discussion is also presented.

MSC:

34K60 Qualitative investigation and simulation of models involving functional-differential equations
92D25 Population dynamics (general)
34K18 Bifurcation theory of functional-differential equations
34K20 Stability theory of functional-differential equations
34K13 Periodic solutions to functional-differential equations
34K19 Invariant manifolds of functional-differential equations
34K17 Transformation and reduction of functional-differential equations and systems, normal forms

References:

[1] Lotka, A. J., Elements of Physical Biology (1925), Baltimore, Md, USA: Williams and Wilkins, Baltimore, Md, USA · JFM 51.0416.06
[2] Volterra, V., Variazioni e fluttuazioni del numero d’individui in specie animali conviventi, Memorie Dell’Accademia Nazionale dei Lincei, 2, 31-113 (1926) · JFM 52.0450.06
[3] Leung, A., Periodic solutions for a prey-predator differential delay equation, Journal of Differential Equations, 26, 3, 391-403 (1977) · Zbl 0365.34078 · doi:10.1016/0022-0396(77)90087-0
[4] Gopalsamy, K., Time lags and global stability in two-species competition, Bulletin of Mathematical Biology, 42, 5, 729-737 (1980) · Zbl 0453.92014 · doi:10.1016/S0092-8240(80)80069-3
[5] Wen, X.; Wang, Z., The existence of periodic solutions for some models with delay, Nonlinear Analysis. Real World Applications, 3, 4, 567-581 (2002) · Zbl 1095.34549 · doi:10.1016/S1468-1218(01)00049-9
[6] Chen, X., Periodicity in a nonlinear discrete predator-prey system with state dependent delays, Nonlinear Analysis. Real World Applications, 8, 2, 435-446 (2007) · Zbl 1152.34367 · doi:10.1016/j.nonrwa.2005.12.005
[7] Yan, X.-P.; Zhang, C.-H., Hopf bifurcation in a delayed Lokta-Volterra predator-prey system, Nonlinear Analysis. Real World Applications, 9, 1, 114-127 (2008) · Zbl 1149.34048 · doi:10.1016/j.nonrwa.2006.09.007
[8] He, X., Stability and delays in a predator-prey system, Journal of Mathematical Analysis and Applications, 198, 2, 355-370 (1996) · Zbl 0873.34062 · doi:10.1006/jmaa.1996.0087
[9] Ruan, S., Absolute stability, conditional stability and bifurcation in Kolmogorov-type predator-prey systems with discrete delays, Quarterly of Applied Mathematics, 59, 1, 159-173 (2001) · Zbl 1035.34084
[10] Wang, L.; Li, W.; Zhao, P., Existence and global stability of positive periodic solutions of discrete predator-prey system with delays, Advances in Difference Equations, 4, 321-336 (2004) · Zbl 1081.39007
[11] Song, Y.; Peng, Y., Stability and bifurcation analysis on a logistic model with discrete and distributed delays, Applied Mathematics and Computation, 181, 2, 1745-1757 (2006) · Zbl 1161.34056 · doi:10.1016/j.amc.2006.03.025
[12] Ma, W.; Takeuchi, Y., Stability analysis on a predator-prey system with distributed delays, Journal of Computational and Applied Mathematics, 88, 1, 79-94 (1998) · Zbl 0897.34062 · doi:10.1016/S0377-0427(97)00203-3
[13] Liu, B.; Teng, Z.; Chen, L., Analysis of a predator-prey model with Holling II functional response concerning impulsive control strategy, Journal of Computational and Applied Mathematics, 193, 1, 347-362 (2006) · Zbl 1089.92060 · doi:10.1016/j.cam.2005.06.023
[14] Xu, R.; Wang, Z., Periodic solutions of a nonautonomous predator-prey system with stage structure and time delays, Journal of Computational and Applied Mathematics, 196, 1, 70-86 (2006) · Zbl 1110.34051 · doi:10.1016/j.cam.2005.08.017
[15] Yan, X.-P.; Chu, Y.-D., Stability and bifurcation analysis for a delayed Lotka-Volterra predator-prey system, Journal of Computational and Applied Mathematics, 196, 1, 198-210 (2006) · Zbl 1095.92071 · doi:10.1016/j.cam.2005.09.001
[16] Teng, Z.; Rehim, M., Persistence in nonautonomous predator-prey systems with infinite delays, Journal of Computational and Applied Mathematics, 197, 2, 302-321 (2006) · Zbl 1110.34054 · doi:10.1016/j.cam.2005.11.006
[17] Jiang, G.; Lu, Q., Impulsive state feedback control of a predator-prey model, Journal of Computational and Applied Mathematics, 200, 1, 193-207 (2007) · Zbl 1134.49024 · doi:10.1016/j.cam.2005.12.013
[18] Kuang, Y., Delay Differential Equations with Applications in Population Dynamics, 191, xii+398 (1993), Boston, Mass, USA: Academic Press, Boston, Mass, USA · Zbl 0777.34002
[19] Zhou, L.; Tang, Y.; Hussein, S., Stability and Hopf bifurcation for a delay competition diffusion system, Chaos, Solitons & Fractals, 14, 8, 1201-1225 (2002) · Zbl 1038.35147 · doi:10.1016/S0960-0779(02)00068-1
[20] Krise, S.; Roy Choudhury, S., Bifurcations and chaos in a predator-prey model with delay and a laser-diode system with self-sustained pulsations, Chaos, Solitons and Fractals, 16, 1, 59-77 (2003) · Zbl 1033.37048 · doi:10.1016/S0960-0779(02)00199-6
[21] Liao, X.; Chen, G., Hopf bifurcation and chaos analysis of Chen’s system with distributed delays, Chaos, Solitons & Fractals, 25, 1, 197-220 (2005) · Zbl 1080.34055 · doi:10.1016/j.chaos.2004.11.007
[22] Liu, Z.; Yuan, R., Stability and bifurcation in a harvested one-predator-two-prey model with delays, Chaos, Solitons and Fractals, 27, 5, 1395-1407 (2006) · Zbl 1097.34051 · doi:10.1016/j.chaos.2005.05.014
[23] Zhang, S.; Tan, D.; Chen, L., Chaotic behavior of a chemostat model with Beddington-DeAngelis functional response and periodically impulsive invasion, Chaos, Solitons and Fractals, 29, 2, 474-482 (2006) · Zbl 1121.92070 · doi:10.1016/j.chaos.2005.08.026
[24] Liu, X.; Xiao, D., Complex dynamic behaviors of a discrete-time predator-prey system, Chaos, Solitons & Fractals, 32, 1, 80-94 (2007) · Zbl 1130.92056 · doi:10.1016/j.chaos.2005.10.081
[25] Wang, F.; Zeng, G., Chaos in a Lotka-Volterra predator-prey system with periodically impulsive ratio-harvesting the prey and time delays, Chaos, Solitons and Fractals, 32, 4, 1499-1512 (2007) · Zbl 1130.37042 · doi:10.1016/j.chaos.2005.11.102
[26] Sun, C.; Han, M.; Lin, Y.; Chen, Y., Global qualitative analysis for a predator-prey system with delay, Chaos, Solitons & Fractals, 32, 4, 1582-1596 (2007) · Zbl 1145.34042 · doi:10.1016/j.chaos.2005.11.038
[27] Çelik, C., The stability and Hopf bifurcation for a predator-prey system with time delay, Chaos, Solitons and Fractals, 37, 1, 87-99 (2008) · Zbl 1152.34059 · doi:10.1016/j.chaos.2007.10.045
[28] Çelik, C., Hopf bifurcation of a ratio-dependent predator-prey system with time delay, Chaos, Solitons and Fractals, 42, 3, 1474-1484 (2009) · Zbl 1198.34149 · doi:10.1016/j.chaos.2009.03.071
[29] Çelik, C., Dynamical behavior of a ratio dependent predator-prey system with distributed delay, Discrete and Continuous Dynamical Systems B, 16, 3, 719-738 (2011) · Zbl 1228.34127 · doi:10.3934/dcdsb.2011.16.719
[30] Cushing, J. M., Integro-Differential Equations and Delay Models in Population Dynamics (1977), Heidelberg, Germany: Springer, Heidelberg, Germany · Zbl 0363.92014
[31] Wei, J.; Jiang, W., Stability and bifurcation analysis in Van der Pol’s oscillator with delayed feedback, Journal of Sound and Vibration, 283, 3-5, 801-819 (2005) · Zbl 1237.70091 · doi:10.1016/j.jsv.2004.05.014
[32] Ruan, S.; Wei, J., On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dynamics of Continuous, Discrete & Impulsive Systems A, 10, 6, 863-874 (2003) · Zbl 1068.34072
[33] Hassard, B. D.; Kazarinoff, N. D.; Wan, Y. H., Theory and Applications of Hopf Bifurcation (1981), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0474.34002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.