×

On a (no longer) new Segal algebra: a review of the Feichtinger algebra. (English) Zbl 1496.43001

Summary: Since its invention in 1979 the Feichtinger algebra has become a useful Banach space of functions with applications in time-frequency analysis, the theory of pseudo-differential operators and several other topics. It is easily defined on locally compact Abelian groups and, in comparison with the Schwartz(-Bruhat) space, the Feichtinger algebra allows for more general results with easier proofs. This review paper develops the theory of Feichtinger’s algebra in a linear and comprehensive way. The material gives an entry point into the subject and it will also bring new insight to the expert. A further goal of this paper is to show the equivalence of the many different characterizations of the Feichtinger algebra known in the literature. This task naturally guides the paper through basic properties of functions that belong to this space, over operators on it, and to aspects of its dual space. Additional results include a seemingly forgotten theorem by Reiter on Banach space isomorphisms of the Feichtinger algebra, a new identification of Feichtinger’s algebra as the unique Banach space in \(L^{1}\) with certain properties, and the kernel theorem for the Feichtinger algebra. A historical description of the development of the theory, its applications, and a list of related function space constructions is included.

MSC:

43A15 \(L^p\)-spaces and other function spaces on groups, semigroups, etc.
43-02 Research exposition (monographs, survey articles) pertaining to abstract harmonic analysis

References:

[1] Antoine, J.-P.: Quantum mechanics beyond hilbert space. In: A. Bohm, H.-D. Doebner, P. Kileanowski (eds.) Irreversibility and Causality, Semigroups and Rigged Hilbert Spaces. Lecture Notes in Physics, vol 504, Berlin, Springer (1998)
[2] Balan, R., The noncommutative Wiener lemma, linear independence, and spectral properties of the algebra of time-frequency shift operators, Trans. Am. Math. Soc., 360, 3921-3941, (2008) · Zbl 1145.43002 · doi:10.1090/S0002-9947-08-04448-6
[3] Balan, R.; Casazza, PG; Heil, C.; Landau, Z., Density, overcompleteness, and localization of frames I: theory, J. Fourier Anal. Appl., 12, 105-143, (2006) · Zbl 1096.42014 · doi:10.1007/s00041-006-6022-0
[4] Balan, R.; Casazza, PG; Heil, C.; Landau, Z., Density, overcompleteness, and localization of frames. II: Gabor systems, J. Fourier Anal. Appl., 12, 307-344, (2006) · Zbl 1097.42022 · doi:10.1007/s00041-005-5035-4
[5] Balazs, P.; Gröchenig, K.; Pesenson, I. (ed.); Mhaskar, H. (ed.); Mayeli, A. (ed.); Gia, Q. (ed.); Zhou, D-X (ed.), A guide to localized frames and applications to Galerkin-like representations of operators, 47-79, (2017), Cham · Zbl 1392.42028 · doi:10.1007/978-3-319-55550-8_4
[6] Benedetto, J.J.: Spectral Synthesis. Academic Press, San Francisco (1975) · Zbl 0364.43001 · doi:10.1007/978-3-322-96661-2
[7] Benedetto, JJ; Zimmermann, G., Sampling multipliers and the Poisson summation formula, J. Fourier Anal. Appl., 3, 505-523, (1997) · Zbl 0888.42002 · doi:10.1007/BF02648881
[8] Bényi, Á; Gröchenig, K.; Heil, C.; Okoudjou, KA, Modulation spaces and a class of bounded multilinear pseudodifferential operators, J. Oper. Theory, 54, 387-399, (2005) · Zbl 1106.47041
[9] Bényi, Á; Okoudjou, K., Bilinear pseudodifferential operators on modulation spaces, J. Fourier Anal. Appl., 10, 301-313, (2004) · Zbl 1061.47044 · doi:10.1007/s00041-004-0977-5
[10] Bertrandias, J-P; Datry, C.; Dupuis, C., Unions et intersections d’espaces \({L}^p\) invariantes par translation ou convolution, Ann. Inst. Fourier, 28, 53-84, (1978) · Zbl 0365.46029 · doi:10.5802/aif.689
[11] Bertrandias, J.-P.: Espaces \(l^p(a)\) et \(l^p(q)\). Groupe de travail d’analyse harmonique, vol. I, pp. 1-13. Université scientifique et medicale de Grenoble, laboratoire de mathématique pures associé au c.n.r.s. (1982)
[12] Bertrandias, J.-P.: Espaces \(l^p({l^α })\). Groupe de travail d’analyse harmonique, vol. II, pp. IV.1-IV.12. Université scientifique et medicale de Grenoble, laboratoire de mathématique pures associé au c.n.r.s. (1984)
[13] Boggiatto, P.: Localization operators with \({L}^p\) symbols on modulation spaces. In: Advances in Pseudo-Differential Operators. Operator Theory: Advances and Applications, vol. 155, pp. 149-163. Birkhäuser, Basel (2004) · Zbl 1078.46019
[14] Bonsall, FF, Decompositions of functions as sums of elementary functions, Q. J. Math. Oxford Ser., 2, 129-136, (1986) · Zbl 0594.46019 · doi:10.1093/qmath/37.2.129
[15] Bonsall, F., A general atomic decomposition theorem and Banach’s closed range theorem, Q. J. Math. Oxford Ser. (2), 42, 9-14, (1991) · Zbl 0747.46007 · doi:10.1093/qmath/42.1.9
[16] Bourbaki, N.: Éléments de mathématique. XXXII: Théories spectrales. Chap. I-II. Algèbres normées. Groupes localement compacts commutatifs. Actualités Sci. et Ind. 1332. Hermann & Cie, Paris (1967) · Zbl 0152.32603
[17] Bowers, A., Kalton, N.J.: An Introductory Course in Functional Analysis. Universitext. Springer, New York (2014). With a foreword by Gilles Godefroy · Zbl 1328.46001
[18] Bruhat, F., Distributions sur un groupe localement compact et applications à l etude des représentations des groupes \(p\)-adiques, Bull. Soc. Math. France, 89, 43-75, (1961) · Zbl 0128.35701 · doi:10.24033/bsmf.1559
[19] Cartier, P., Über einige Integralformeln in der Theorie der quadratischen Formen, Math. Z., 84, 93-100, (1964) · Zbl 0135.08701 · doi:10.1007/BF01117117
[20] Christensen, JG; Mayeli, A.; Ólafsson, G., Coorbit description and atomic decomposition of Besov spaces, Numer. Funct. Anal. Optim., 33, 847-871, (2012) · Zbl 1251.30062 · doi:10.1080/01630563.2012.682134
[21] Christensen, O., Atomic decomposition via projective group representations, Rocky Mountain J. Math., 26, 1289-1312, (1996) · Zbl 0891.22006 · doi:10.1216/rmjm/1181071989
[22] Christensen, O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis, 2nd edn. Birkhäuser, Cham (2016) · Zbl 1348.42033
[23] Civan, G.: Identification of Operators on Elementary Locally Compact Abelian Groups. PhD thesis (2015)
[24] Cordero, E., Feichtinger, H.G., Luef, F.: Banach Gelfand triples for Gabor analysis. Pseudo-differential Operators. Lecture Notes in Mathematics, vol. 1949, pp. 1-33. Springer, Berlin (2008) · Zbl 1161.35060
[25] Cordero, E.; Gröchenig, K., Time-frequency analysis of localization operators, J. Funct. Anal., 205, 107-131, (2003) · Zbl 1047.47038 · doi:10.1016/S0022-1236(03)00166-6
[26] Cordero, E.; Nicola, F., Pseudodifferential operators on \(l^p\), Wiener amalgam and modulation spaces, Int. Math. Res. Not., 2010, 1860-1893, (2010) · Zbl 1194.35525
[27] Cordero, E., Nicola, F.: Kernel theorems for modulation spaces. J. Fourier Anal. Appl. (2017)
[28] Cordero, E.; Tabacco, A.; Wahlberg, P., Schrödinger-type propagators, pseudodifferential operators and modulation spaces, J. Lond. Math. Soc. (2), 88, 375-395, (2013) · Zbl 1301.35230 · doi:10.1112/jlms/jdt020
[29] Cowling, MG, Some applications of Grothendieck’s theory of topological tensor products in harmonic analysis, Math. Ann., 232, 273-285, (1978) · Zbl 0343.43012 · doi:10.1007/BF01351432
[30] Czaja, W., Boundedness of pseudodifferential operators on modulation spaces, J. Math. Anal. Appl., 284, 389-396, (2003) · Zbl 1044.47036 · doi:10.1016/S0022-247X(03)00364-0
[31] Dahlke, S.; Fornasier, M.; Rauhut, H.; Steidl, G.; Teschke, G., Generalized coorbit theory, Banach frames, and the relation to \(α \)-modulation spaces, Proc. Lond. Math. Soc., 96, 464-506, (2008) · Zbl 1215.42035 · doi:10.1112/plms/pdm051
[32] Dahlke, S.; Steidl, G.; Teschke, G., Weighted coorbit spaces and Banach frames on homogeneous spaces, J. Fourier Anal. Appl., 10, 507-539, (2004) · Zbl 1098.42025 · doi:10.1007/s00041-004-3055-0
[33] de Gosson, M.: Symplectic Methods in Harmonic Analysis and in Mathematical Physics. Birkhäuser, Basel (2011) · Zbl 1247.81510 · doi:10.1007/978-3-7643-9992-4
[34] De Gosson, M.: The Wigner Transform. Advanced Textbooks in Mathematics. World Scientific Publishing Co. Pte. Ltd., Hackensack (2017) · Zbl 1372.81009
[35] Madrid, R., The role of the rigged Hilbert space in quantum mechanics, Eur. J. Phys., 26, 277-312, (2005) · Zbl 1079.81022 · doi:10.1088/0143-0807/26/2/008
[36] Dobler, T.: Wiener Amalgam Spaces on Locally Compact Groups. Master thesis, University of Vienna (1989)
[37] Dörfler, M.; Feichtinger, HG; Gröchenig, K., Time-frequency partitions for the Gelfand triple \(({S}_0, {L}^2,{{S}_0}^{′ })\), Math. Scand., 98, 81-96, (2006) · Zbl 1215.42013 · doi:10.7146/math.scand.a-14985
[38] Feichtinger, HG, A characterization of Wiener’s algebra on locally compact groups, Arch. Math., 29, 136-140, (1977) · Zbl 0363.43003 · doi:10.1007/BF01220386
[39] Feichtinger, H.G.: Eine neue Segalalgebra mit Anwendungen in der Harmonischen Analyse. In: Winterschule 1979, Internationale Arbeitstagung über Topologische Gruppen und Gruppenalgebren, pp. 23-25. University of Vienna (1979)
[40] Feichtinger, HG, Gewichtsfunktionen auf lokalkompakten Gruppen, Sitzungsber. d. österr. Akad. Wiss., 188, 451-471, (1979) · Zbl 0447.43004
[41] Feichtinger, H.G.: The minimal strongly character invariant Segal algebra II, preprint (1980)
[42] Feichtinger, HG, Un espace de Banach de distributions tempérées sur les groupes localement compacts abéliens, C. R. Acad. Sci. Paris Ser. A-B, 290, 791-794, (1980) · Zbl 0433.43002
[43] Feichtinger, HG, A characterization of minimal homogeneous Banach spaces, Proc. Am. Math. Soc., 81, 55-61, (1981) · Zbl 0465.43002 · doi:10.1090/S0002-9939-1981-0589135-9
[44] Feichtinger, H.G.: Banach spaces of distributions of Wiener’s type and interpolation. In: P. Butzer, S. Nagy, E. Görlich (eds.) Proceedings of the Conference on Functional Analysis and Approximation, Oberwolfach August 1980. International Series of Numerical Mathematics, vol. 69, pp. 153-165. Birkhäuser, Boston (1981) · Zbl 0488.43003
[45] Feichtinger, HG, On a new Segal algebra, Monatshefte für Mathematik, 92, 269-289, (1981) · Zbl 0461.43003 · doi:10.1007/BF01320058
[46] Feichtinger, H.G.: A new family of functional spaces on the Euclidean n-space. In: Proceedings of the Conference on Theory of Approximation of Functions. Teor. Priblizh (1983) · Zbl 0505.46024
[47] Feichtinger, H.G.: Banach convolution algebras of Wiener type. In: Functions, Series, Operators, Vol. I, II (Budapest, 1980). Colloquia Mathematica Societatis Janos Bolyai, vol. 35, pp. 509-524. North-Holland, Amsterdam (1983) · Zbl 0528.43001
[48] Feichtinger, H.G.: Modulation spaces on locally compact Abelian groups. University of Vienna (1983) (preprint)
[49] Feichtinger, HG, Banach spaces of distributions defined by decomposition methods. II., Math. Nachr., 132, 207-237, (1987) · Zbl 0586.46031 · doi:10.1002/mana.19871320116
[50] Feichtinger, HG, Minimal Banach spaces and atomic representations, Publ. Math. Debrecen, 34, 231-240, (1987) · Zbl 0562.43003
[51] Feichtinger, H.G.: An elementary approach to the generalized Fourier transform. In: T. Rassias, (ed.) Topics in Mathematical Analysis. Series in Pure Mathematics, vol. 11, pp. 246-272. World Scientific Publishing (1989) · Zbl 0737.42011
[52] Feichtinger, H.G.: Atomic characterizations of modulation spaces through Gabor-type representations. In: Proceedings of the Conference on Constructive Function Theory, Rocky Mountain Journal of Mathematics, vol. 19, pp. 113-126 (1989) · Zbl 0780.46023
[53] Feichtinger, H.G.: Wiener amalgams over Euclidean spaces and some of their applications. In: K. Jarosz (ed.) Proceedings of the Conference on Function Spaces, Edwardsville/IL (USA) 1990. Lecture Notes in Pure and Applied Mathematics, vol. 136, pp. 123-137. Marcel Dekker (1992) · Zbl 0833.46030
[54] Feichtinger, H.G.: Spline-type spaces in Gabor analysis. In: D.X. Zhou (ed.) Wavelet Analysis: Twenty Years Developments Proceedings of the International Conference of Computational Harmonic Analysis, Hong Kong, China, June 4-8, 2001. Series Analysis, vol. 1, pp. 100-122. World Scientific Publishing, River Edge, NJ (2002) · Zbl 1034.42029
[55] Feichtinger, H.G.: Modulation spaces of locally compact Abelian groups. In: R. Radha, M. Krishna, S. Thangavelu, (eds.) Proceedings of the International Conference on Wavelets and Applications, pp. 1-56, Chennai, January 2002, 2003. New Delhi Allied Publishers
[56] Feichtinger, HG, Modulation spaces: looking back and ahead, Sampl. Theory Signal Image Process., 5, 109-140, (2006) · Zbl 1156.43300
[57] Feichtinger, H.G.: Banach Gelfand triples for applications in physics and engineering. AIP Conference Proceeding, vol. 1146, pp. 189-228. American Institute of Physics (2009)
[58] Feichtinger, HG; Gröbner, P., Banach spaces of distributions defined by decomposition methods I., Math. Nachr., 123, 97-120, (1985) · Zbl 0586.46030 · doi:10.1002/mana.19851230110
[59] Feichtinger, H.G., Gröchenig, K.: A unified approach to atomic decompositions via integrable group representations. In: Function Spaces and Applications (Lund, 1986). Lecture Notes in Mathematics, vol. 1302, pp. 52-73. Springer, Berlin (1988) · Zbl 0658.22007
[60] Feichtinger, HG; Gröchenig, K., Banach spaces related to integrable group representations and their atomic decompositions. I., J. Funct. Anal., 86, 307-340, (1989) · Zbl 0691.46011 · doi:10.1016/0022-1236(89)90055-4
[61] Feichtinger, HG; Gröchenig, K., Banach spaces related to integrable group representations and their atomic decompositions. II., Monatsh. Math., 108, 129-148, (1989) · Zbl 0713.43004 · doi:10.1007/BF01308667
[62] Feichtinger, H.G., Gröchenig, K.: Gabor wavelets and the Heisenberg group: Gabor expansions and short time Fourier transform from the group theoretical point of view. In: C.K. Chui (ed.) Wavelets: A Tutorial in Theory and Applications. Wavelet Analysis Applications, vol. 2, pp. 359-397. Academic Press, Boston (1992) · Zbl 0849.43003
[63] Feichtinger, HG; Gröchenig, K., Gabor frames and time-frequency analysis of distributions, J. Funct. Anal., 146, 464-495, (1997) · Zbl 0887.46017 · doi:10.1006/jfan.1996.3078
[64] Feichtinger, HG; Gröchenig, K.; Walnut, DF, Wilson bases and modulation spaces, Math. Nachr., 155, 7-17, (1992) · Zbl 0794.46009 · doi:10.1002/mana.19921550102
[65] Feichtinger, H.G., Helffer, B., Lamoureux, M.P., Lerner, N., Toft, J.: Pseudo-Differential Operators. Lecture Notes in Mathematics, vol. 1949. Springer, Berlin (2006)
[66] Feichtinger, H.G., Hörmann, W.: A distributional approach to generalized stochastic processes on locally compact Abelian groups. In: New Perspectives on Approximation and Sampling Theory. Festschrift in Honor of Paul Butzer’s 85th Birthday, pp. 423-446. Birkhäuser, Cham (2014) · Zbl 1332.60056
[67] Feichtinger, HG; Kaiblinger, N., Varying the time-frequency lattice of Gabor frames, Trans. Am. Math. Soc., 356, 2001-2023, (2004) · Zbl 1033.42033 · doi:10.1090/S0002-9947-03-03377-4
[68] Feichtinger, HG; Kaiblinger, N., Quasi-interpolation in the Fourier algebra, J. Approx. Theory, 144, 103-118, (2007) · Zbl 1108.41006 · doi:10.1016/j.jat.2006.05.001
[69] Feichtinger, H.G., Kozek, W.: Quantization of TF lattice-invariant operators on elementary LCA groups. In: H.G. Feichtinger, T. Strohmer, (eds.) Gabor Analysis and Algorithms. Applied and Numerical Harmonic Analysis, pp. 233-266. Birkhäuser, Boston (1998) · Zbl 0890.42012
[70] Feichtinger, HG; Luef, F., Wiener amalgam spaces for the fundamental identity of Gabor analysis, Collect. Math., 57, 233-253, (2006) · Zbl 1135.39303
[71] Feichtinger, H.G., Luef, F., Werther, T.: A guided tour from linear algebra to the foundations of Gabor analysis. In: Gabor and Wavelet Frames. Lecture Notes Series Institute for Mathematical Sciences (NUS), vol. 10, pp. 1-49. World Scientific Publishing, Hackensack (2007) · Zbl 1134.42338
[72] Feichtinger, HG; Weisz, F., The Segal algebra \({S}_0({R}^d)\) and norm summability of Fourier series and Fourier transforms, Monatsh. Math., 148, 333-349, (2006) · Zbl 1130.42012 · doi:10.1007/s00605-005-0358-4
[73] Feichtinger, HG; Weisz, F., Wiener amalgams and pointwise summability of Fourier transforms and Fourier series, Math. Proc. Camb. Philos. Soc., 140, 509-536, (2006) · Zbl 1117.43001 · doi:10.1017/S0305004106009273
[74] Feichtinger, H.G., Zimmermann, G.: A Banach space of test functions for Gabor analysis. In: Feichtinger, H.G., Strohmer, T. (eds.) Gabor Analysis and Algorithms: Theory and Applications. Applied and Numerical Harmonic Analysis, pp. 123-170. Birkhäuser, Boston (1998) · Zbl 0890.42008
[75] Folland, G.B.: Harmonic Analysis in Phase Space. Princeton University Press, Princeton, NJ (1989) · Zbl 0682.43001
[76] Folland, G.B.: A Course in Abstract Harmonic Analysis. Studies in Advanced Mathematics, vol. viii. CRC Press, Boca Raton, FL (1995) · Zbl 0857.43001
[77] Folland, GB, The abstruse meets the applicable: some aspects of time-frequency analysis, Proc. Indian Acad. Sci. Math. Sci., 116, 121-136, (2006) · Zbl 1128.42014 · doi:10.1007/BF02829782
[78] Forrest, BE; Spronk, N.; Wood, P., Operator Segal algebras in Fourier algebras, Studia Math., 179, 277-295, (2007) · Zbl 1112.43003 · doi:10.4064/sm179-3-5
[79] Friedlander, F.G.: Introduction to the Theory of Distributions, 2nd edn. Cambridge University Press, Cambridge (1998). With additional material by M. Joshi · Zbl 0971.46024
[80] Führ, H., Coorbit spaces and wavelet coefficient decay over general dilation groups, Trans. Am. Math. Soc., 367, 7373-7401, (2015) · Zbl 1335.42039 · doi:10.1090/S0002-9947-2014-06376-9
[81] Führ, H.; Voigtlaender, F., Wavelet coorbit spaces viewed as decomposition spaces, J. Funct. Anal., 1, 80-154, (2015) · Zbl 1435.42016 · doi:10.1016/j.jfa.2015.03.019
[82] Gel’fand, I.M., Vilenkin, N.Y.: Generalized Functions. Applications of Harmonic Analysis, vol. 4. Translated by Amiel Feinstein. Academic Press, New York (1964) · Zbl 0136.11201
[83] Grothendieck, A., Produits tensoriels topologiques et espaces nucléaires, Mem. Am. Math. Soc., 1955, 140, (1955) · Zbl 0064.35501
[84] Gröchenig, K., Describing functions: atomic decompositions versus frames, Monatsh. Math., 112, 1-41, (1991) · Zbl 0736.42022 · doi:10.1007/BF01321715
[85] Gröchenig, K., An uncertainty principle related to the Poisson summation formula, Studia Math., 121, 87-104, (1996) · Zbl 0866.42005 · doi:10.4064/sm-121-1-87-104
[86] Gröchenig, K.; Feichtinger, HG (ed.); Strohmer, T. (ed.), Aspects of Gabor analysis on locally compact Abelian groups, 211-231, (1998), Boston, MA · Zbl 0890.42011 · doi:10.1007/978-1-4612-2016-9_7
[87] Gröchenig, K.: Foundations of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA (2001) · Zbl 0966.42020
[88] Gröchenig, K.: Uncertainty principles for time-frequency representations. In: H.G. Feichtinger, T. Strohmer (ed.) Advances in Gabor Analysis. Applied and Numerical Harmonic Analysis, pp. 11-30. Birkhäuser, Boston (2003) · Zbl 1039.42004
[89] Gröchenig, K.: A pedestrian’s approach to pseudodifferential operators. In: C. Heil (ed.) Harmonic Analysis and Applications. Applied and Numerical Harmonic Analysis, Volume in Honor of John J. Benedetto’s 65th Birthday, pp. 139-169. Birkhäuser, Boston, MA (2006) · Zbl 1098.47043
[90] Gröchenig, K., Composition and spectral invariance of pseudodifferential operators on modulation spaces, J. Anal. Math., 98, 65-82, (2006) · Zbl 1148.47036 · doi:10.1007/BF02790270
[91] Gröchenig, K.: Gabor frames without inequalities. Int. Math. Res. Not. (23): Art. ID rnm111, 21, (2007) · Zbl 1147.42013
[92] Gröchenig, K.: Weight functions in time-frequency analysis. In: L. Rodino, et al. (eds.) Pseudodifferential Operators: Partial Differential Equations and Time-Frequency Analysis. Fields Institute Communications, vol. 52, pp. 343-366. American Mathematical Society, Providence, RI (2007) · Zbl 1132.42313
[93] Gröchenig, K., The mystery of Gabor frames, J. Fourier Anal. Appl., 20, 865-895, (2014) · Zbl 1309.42045 · doi:10.1007/s00041-014-9336-3
[94] Gröchenig, K.; Heil, C., Modulation spaces and pseudodifferential operators, Integr. Equ. Oper. Theory, 34, 439-457, (1999) · Zbl 0936.35209 · doi:10.1007/BF01272884
[95] Gröchenig, K., Heil, C.: Modulation spaces as symbol classes for pseudodifferential operators. In: R.R.M. Krishna (ed.) Proceedings of International conference on wavelets and applications 2002, pp. 151-170, Chennai, India, 2003. Allied Publishers, Chennai
[96] Gröchenig, K.; Leinert, M., Wiener’s lemma for twisted convolution and Gabor frames, J. Am. Math. Soc., 17, 1-18, (2004) · Zbl 1037.22012 · doi:10.1090/S0894-0347-03-00444-2
[97] Gröchenig, K.; Ortega Cerdà, J.; Romero, JL, Deformation of Gabor systems, Adv. Math., 277, 388-425, (2015) · Zbl 1320.42024 · doi:10.1016/j.aim.2015.01.019
[98] Gröchenig, K.; Strohmer, T., Pseudodifferential operators on locally compact Abelian groups and Sjöstrand’s symbol class, J. Reine Angew. Math., 613, 121-146, (2007) · Zbl 1145.47034
[99] Havin, V.P., Nikol’skij, N.K.: Commutative Harmonic Analysis II. Group Methods in Commutative Harmonic Analysis. Springer, (1998) · Zbl 0892.00021
[100] Heil, C.; Krishna, M. (ed.); Radha, R. (ed.); Thangavelu, S. (ed.), An introduction to weighted Wiener amalgams, 183-216, (2003), New Delhi
[101] Heil, C., History and evolution of the density theorem for Gabor frames, J. Fourier Anal. Appl., 13, 113-166, (2007) · Zbl 1133.42043 · doi:10.1007/s00041-006-6073-2
[102] Heil, C.: A Basis Theory Primer, Expanded edn. Applied and Numerical Harmonic Analysis. Birkhäuser, Basel (2011) · Zbl 1227.46001
[103] Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis. Vol. I. Grundlehren der mathematischen Wissenschaften, vol. 115. Springer, Berlin (1963) · Zbl 0115.10603
[104] Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis. Vol. II. Grundlehren der mathematischen Wissenschaften, vol. 152. Springer, Berlin (1970)
[105] Heyer, H.; Rao, MM (ed.), Random fields and hypergroups, 85-182, (2014), Hackensack · Zbl 1334.60087 · doi:10.1142/9789814551281_0002
[106] Hogan, J.A., Lakey, J.D.: Embeddings and uncertainty principles for generalized modulation spaces. In: Modern Sampling Theory. Applied and Numerical Harmonic Analysis, pp. 73-105. Birkhäuser, Boston, MA (2001)
[107] Hogan, J.A., Lakey, J.D.: Time-Frequency and Time-Scale Methods. Adaptive Decompositions, Uncertainty Principles, and Sampling. Birkhäuser, Boston (2005) · Zbl 1079.42027
[108] Hörmander, L.: The Analysis of Linear Partial Differential Operators. I. Classics in Mathematics. Springer, Berlin (2003). Distribution theory and Fourier analysis, Reprint of the second (1990) edition
[109] Hörmann, W.: Generalized Stochastic Processes and Wigner Distribution. PhD thesis, University of Vienna (1989)
[110] Ito, K., Stationary random distributions, Mem. Coll. Sci. Univ. Kyoto Ser. A, 28, 209-223, (1954) · Zbl 0059.11505 · doi:10.1215/kjm/1250777359
[111] Janssen, AJEM, Duality and biorthogonality for Weyl-Heisenberg frames, J. Fourier Anal. Appl., 1, 403-436, (1995) · Zbl 0887.42028 · doi:10.1007/s00041-001-4017-4
[112] Janssen, AJEM, Hermite function description of Feichtinger’s space \({S}_0\), J. Fourier Anal. Appl., 11, 577-588, (2005) · Zbl 1102.42011 · doi:10.1007/s00041-005-4077-y
[113] Janssen, AJEM, Zak transform characterization of \(S_0\), Sampl. Theory Signal Image Process., 5, 141-162, (2006) · Zbl 1156.42309
[114] Kahane, J-P; Lemarie, P-G, Rieusset. Remarks on the Poisson summation formula. (Remarques sur la formule sommatoire de Poisson.), Studia Math., 109, 303-316, (1994) · Zbl 0820.42004 · doi:10.4064/sm-109-3-303-316
[115] Kaiblinger, N., Approximation of the Fourier transform and the dual Gabor window, J. Fourier Anal. Appl., 11, 25-42, (2005) · Zbl 1064.42022 · doi:10.1007/s00041-004-3070-1
[116] Katznelson, Y.: An introduction to harmonic analysis. Cambridge Mathematical Library, 3rd edn. Cambridge University Press, Cambridge (2004) · Zbl 1055.43001 · doi:10.1017/CBO9781139165372
[117] Keville, B.: Multidimensional Second Order Generalised Stochastic Processes on Locally Compact Abelian Groups. PhD thesis, Trinity College Dublin (2003)
[118] Kluvánek, I., Sampling theorem in abstract harmonic analysis, Mat. v Casopis Sloven. Akad. Vied, 15, 43-48, (1965) · Zbl 0154.44403
[119] Labate, D., Pseudodifferential operators on modulation spaces, J. Math. Anal. Appl., 262, 242-255, (2001) · Zbl 0997.47039 · doi:10.1006/jmaa.2001.7566
[120] Lieb, EH, Integral bounds for radar ambiguity functions and Wigner distributions, J. Math. Phys., 31, 594-599, (1990) · Zbl 0704.46050 · doi:10.1063/1.528894
[121] Liu, T-S; Rooij, A.; Wang, J-K, On some group algebra modules related to Wiener’s algebra \(m_1\), Pac. J. Math., 55, 507-520, (1974) · Zbl 0303.43011 · doi:10.2140/pjm.1974.55.507
[122] Losert, V., A characterization of the minimal strongly character invariant Segal algebra, Ann. Inst. Fourier (Grenoble), 30, 129-139, (1980) · Zbl 0425.43003 · doi:10.5802/aif.795
[123] Luef, F.: Gabor analysis, noncommutative tori and Feichtinger’s algebra. In: Gabor and Wavelet Frames. Lecture Notes Series Institute for Mathematical Sciences (NUS), vol. 10, pp. 77-106. World Scientific Publishing, Hackensack (2007) · Zbl 1146.46033
[124] Luef, F., Projective modules over non-commutative tori are multi-window Gabor frames for modulation spaces, J. Funct. Anal., 257, 1921-1946, (2009) · Zbl 1335.46064 · doi:10.1016/j.jfa.2009.06.001
[125] Mayer, M.: Eine Einführung in die verallgemeinerte Fouriertransformation. Diplomarbeit, University of Vienna (1987)
[126] Megginson, R.: An Introduction to Banach Space Theory. Graduate Texts in Mathematics, vol. 183, pp. xx+596. Springer, New York (1998) · Zbl 0910.46008
[127] Okoudjou, KA, Embedding of some classical Banach spaces into modulation spaces, Proc. Am. Math. Soc., 132, 1639-1647, (2004) · Zbl 1044.46030 · doi:10.1090/S0002-9939-04-07401-5
[128] Osborne, MS, On the Schwartz-Bruhat space and the Paley-Wiener theorem for locally compact Abelian groups, J. Funct. Anal., 19, 40-49, (1975) · Zbl 0295.43008 · doi:10.1016/0022-1236(75)90005-1
[129] Parthasarathy, K.; Shravan Kumar, N., Feichtinger’s Segal algebra on homogeneous spaces, Int. J. Math., 26, 9, (2015) · Zbl 1334.43005 · doi:10.1142/S0129167X15500548
[130] Pfander, GE, Sampling of operators, J. Fourier Anal. Appl., 19, 612-650, (2013) · Zbl 1347.42046 · doi:10.1007/s00041-013-9269-2
[131] Pfander, GE; Walnut, DF, Measurement of time-variant channels, IEEE Trans. Inform. Theory, 52, 4808-4820, (2006) · Zbl 1323.94087 · doi:10.1109/TIT.2006.883553
[132] Poguntke, D., Gewisse Segalsche Algebren auf lokalkompakten Gruppen, Arch. Math., 33, 454-460, (1980) · Zbl 0411.46040 · doi:10.1007/BF01222784
[133] Quehenberger, F.: Spektralsynthese und die Segalalgebra \(S_0({\mathbb{R}}^m)\). Master’s thesis, University of Vienna (1989)
[134] Reiter, H.: \(L^1\)-Algebras and Segal Algebras. Springer, Berlin (1971) · Zbl 0219.43003 · doi:10.1007/BFb0060759
[135] Reiter, H., Über den Satz von Weil-Cartier, Monatsh. Math., 86, 13-62, (1978) · Zbl 0396.43015 · doi:10.1007/BF01300054
[136] Reiter, H.: Metaplectic Groups and Segal Algebras. Lecture Notes in Mathematics. Springer, Berlin (1989) · Zbl 0688.43001 · doi:10.1007/BFb0093683
[137] Reiter, H., On the Siegel-Weil formula, Monatsh. Math., 116, 299-330, (1993) · Zbl 0814.43002 · doi:10.1007/BF01301536
[138] Reiter, H., Stegeman, J.D.: Classical Harmonic Analysis and Locally Compact Groups. London Mathematical Society Monographs. 2nd edn., New Series, vol. 22. The Clarendon Press, Oxford University Press, New York (2000) · Zbl 0965.43001
[139] Rieffel, MA, C*-algebras associated with irrational rotations, Pac. J. Math., 93, 415-429, (1981) · Zbl 0499.46039 · doi:10.2140/pjm.1981.93.415
[140] Rieffel, MA, Projective modules over higher-dimensional noncommutative tori, Can. J. Math., 40, 257-338, (1988) · Zbl 0663.46073 · doi:10.4153/CJM-1988-012-9
[141] Rudin, W.: Fourier Analysis on Groups. Interscience Publishers, New York (1962) · Zbl 0107.09603
[142] Rudin, W.: Functional Analysis, 2nd edn. International Series in Pure and Applied Mathematics. McGraw-Hill, New York (1991) · Zbl 0867.46001
[143] Ryan, R.A.: Introduction to Tensor Products of Banach Spaces. Springer Monographs in Mathematics. Springer, London (2002) · Zbl 1090.46001
[144] Schwartz, L.: Théorie des noyaux. In: Proceedings of the International Congress of Mathematicians, Cambridge, MA, 1950, vol. 1, pp. 220-230. American Mathematical Society, Providence, RI (1952) · Zbl 0048.35102
[145] Schwartz, L.: Théorie des Distributions. Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. IX-X. Nouvelle édition, entiérement corrigée, refondue et augmentée. Hermann, Paris (1966) · Zbl 0149.09501
[146] Spronk, N., Operator space structure on Feichtinger’s Segal algebra, J. Funct. Anal., 248, 152-174, (2007) · Zbl 1131.43004 · doi:10.1016/j.jfa.2007.03.028
[147] Stewart, J., Fourier transforms of unbounded measures, Can. J. Math., 31, 1281-1292, (1979) · Zbl 0465.43004 · doi:10.4153/CJM-1979-106-4
[148] Tachizawa, K., The boundedness of pseudodifferential operators on modulation spaces, Math. Nachr., 168, 263-277, (1994) · Zbl 0837.35154 · doi:10.1002/mana.19941680116
[149] Toft, J., Continuity properties for modulation spaces, with applications to pseudo-differential calculus. I, J. Funct. Anal., 207, 399-429, (2004) · Zbl 1083.35148 · doi:10.1016/j.jfa.2003.10.003
[150] Toft, J., Continuity properties for modulation spaces, with applications to pseudo-differential calculus. II, Ann. Glob. Anal. Geom., 26, 73-106, (2004) · Zbl 1098.47045 · doi:10.1023/B:AGAG.0000023261.94488.f4
[151] Toft, J.: Pseudo-differential operators with symbols in modulation spaces. In: Pseudo-Differential Operators: Complex Analysis and Partial Differential Equations. Operator Theory: Advances and Applications, vol. 205, pp. 223-234. Birkhäuser Verlag, Basel (2010) · Zbl 1211.35298
[152] Toft, J., Wong, M., Zhu, H. (eds.): Modern Trends in Pseudo-Differential Operators, vol. 172 (2007) · Zbl 1111.47003
[153] Trèves, F.: Topological Vector Spaces, Distributions and Kernels. Pure and Applied Mathematics, vol. 25. Academic Press, New York (1967) · Zbl 0171.10402
[154] Ullrich, T.; Rauhut, H., Generalized coorbit space theory and inhomogeneous function spaces of Besov-Lizorkin-Triebel type, J. Funct. Anal., 11, 3299-3362, (2011) · Zbl 1219.46035
[155] Voigtlaender, F.: Embedding Theorems for Decomposition Spaces with Applications to Wavelet Coorbit Spaces. PhD thesis, RWTH Aachen University (2015) · Zbl 1435.42016
[156] Wahlberg, P., The random Wigner distribution of Gaussian stochastic processes with covariance in \({S}_0 ({R}^{2d})\), J. Funct. Spaces Appl., 3, 163-181, (2005) · Zbl 1082.60031 · doi:10.1155/2005/252415
[157] Walnut, D., Pfander, F.E., Kailath, T.: Cornerstones of sampling of operator theory. In: Excursions in Harmonic Analysis, vol. 4, 291-332. Birkhäuser/Springer, Cham (2015) · Zbl 1370.47071
[158] Weil, A., Sur certains groupes d’opérateurs unitaires, Acta Math., 111, 143-211, (1964) · Zbl 0203.03305 · doi:10.1007/BF02391012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.