×

The beta-Lindley distribution: properties and applications. (English) Zbl 1437.62083

Summary: We introduce the new continuous distribution, the so-called beta-Lindley distribution that extends the Lindley distribution. We provide a comprehensive mathematical treatment of this distribution. We derive the moment generating function and the \(r\) th moment thus, generalizing some results in the literature. Expressions for the density, moment generating function, and \(r\) th moment of the order statistics also are obtained. Further, we also discuss estimation of the unknown model parameters in both classical and Bayesian setup. The usefulness of the new model is illustrated by means of two real data sets. We hope that the new distribution proposed here will serve as an alternative model to other models available in the literature for modelling positive real data in many areas.

MSC:

62E15 Exact distribution theory in statistics
62E10 Characterization and structure theory of statistical distributions
62N05 Reliability and life testing

References:

[1] Eugene, N.; Lee, C.; Famoye, F., Beta-normal distribution and its applications, Communications in Statistics: Theory and Methods, 31, 4, 497-512 (2002) · Zbl 1009.62516 · doi:10.1081/STA-120003130
[2] Nadarajah, S.; Gupta, A. K., The beta Frechet distribution, Far East Journal of Theoretical Statistics, 14, 1, 15-24 (2004) · Zbl 1074.62008
[3] Nadarajah, S.; Kotz, S., The beta gumbel distribution, Mathematical Problems in Engineering, 2004, 4, 323-332 (2004) · Zbl 1068.62012 · doi:10.1155/S1024123X04403068
[4] Nadarajah, S.; Kotz, S., The beta exponential distribution, Reliability Engineering & System Safety, 91 (2005) · Zbl 1127.62010
[5] Jones, M. C., Families of distributions arising from distributions of order statistics, Test, 13, 1, 1-43 (2004) · Zbl 1110.62012 · doi:10.1007/BF02602999
[6] Barreto-Souza, W.; Santos, A. H. S.; Cordeiro, G. M., The beta generalized exponential distribution, Journal of Statistical Computation and Simulation, 80, 2, 159-172 (2010) · Zbl 1184.62012 · doi:10.1080/00949650802552402
[7] Pescim, R. R.; Demtrio, C. G.; Cordeiro, G. M.; Ortega, E. M.; Urbano, M. R., The beta generalized half-normal distribution, Computational Statistics and Data Analysis, 54, 4, 945-957 (2010) · Zbl 1465.62015
[8] Cordeiro, G. M.; Cristino, C. T.; Hashimoto, E. M.; Ortega, E. M. M., The beta generalized Rayleigh distribution with applications to lifetime data, Statistical Papers, 54, 1, 133-161 (2013) · Zbl 1256.62008
[9] Lindley, D. V., Fiducial distributions and Bayes’ theorem, Journal of the Royal Statistical Society B, 20, 102-107 (1958) · Zbl 0085.35503
[10] Ghitany, M. E.; Atieh, B.; Nadarajah, S., Lindley distribution and its application, Mathematics and Computers in Simulation, 78, 4, 493-506 (2008) · Zbl 1140.62012 · doi:10.1016/j.matcom.2007.06.007
[11] Cordeiro, G. M.; Nadarajah, S., Closed-form expressions for moments of a class of beta generalized distributions, Brazilian Journal of Probability and Statistics, 25, 1, 14-33 (2011) · Zbl 1298.60024 · doi:10.1214/09-BJPS109
[12] Nadarajah, S.; Bakouch, H. S.; Tahmasbi, R., A generalized Lindley distribution, Sankhya B: Applied and Interdisciplinary Statistics, 73, 2, 331-359 (2011) · Zbl 1268.62018 · doi:10.1007/s13571-011-0025-9
[13] Swain, J.; Venkatraman, S.; Wilson, J., Least squares estimation of distribution function in Johnson’s translation system, Journal of Statistical Computation and Simulation, 29, 271-297 (1988)
[14] Johnson, N. L.; Kotz, S.; Balakrishnan, N., Continuous Univariate Distr ibution, 2 (1995), John Wiley & Sons · Zbl 0821.62001
[15] Berger, J. O., Statistical Decision Theory and Bayesian Analysis (1985), Springer · Zbl 0572.62008 · doi:10.1007/978-1-4757-4286-2
[16] Upadhyay, S. K.; Gupta, A., A Bayes analysis of modified Weibull distribution via Markov chain MONte Carlo simulation, Journal of Statistical Computation and Simulation, 80, 3-4, 241-254 (2010) · Zbl 1187.62058 · doi:10.1080/00949650802600730
[17] Gelfand, A. E.; Smith, A. F. M., Sampling-based approaches to calculating marginal densities, Journal of the American Statistical Association, 85, 410, 398-409 (1990) · Zbl 0702.62020 · doi:10.1080/01621459.1990.10476213
[18] Hastings, W. K., Monte carlo sampling methods using Markov chains and their applications, Biometrika, 57, 1, 97-109 (1970) · Zbl 0219.65008 · doi:10.1093/biomet/57.1.97
[19] Brooks, S. P., Markov chain Monte Carlo method and its application, Journal of the Royal Statistical Society Series D: The Statistician, 47, 1, 69-100 (1998) · doi:10.1111/1467-9884.00117
[20] Chen, M. H.; Shao, Q. M., Monte carlo estimation of Bayesian credible and HPD intervals, Journal of Computational and Graphical Statistics, 8, 1, 69-92 (1999) · doi:10.2307/1390921
[21] Upadhyay, S. K.; Vasishta, N.; Smith, A. F. M., Bayes inference in life testing and reliability via Markov chain Monte Carlo simulation, Sankhya: The Indian Journal of Statistics A, 63, 1, 15-40 (2001) · Zbl 0995.62505
[22] Lee, E. T.; Wang, J. W., Statistical Methods for Survival Data Analysis (2003), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 1026.62103 · doi:10.1002/0471458546
[23] Bjerkedal, T., Acquisition of resistance in Guinea pigs infected with different doses of virulent tubercle bacilli, The American Journal of Epidemiology, 72, 1, 130-148 (1960)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.