×

Iterative algorithms for variational inclusions, mixed equilibrium and fixed point problems with application to optimization problems. (English) Zbl 1234.49008

Summary: In this paper, we introduce an iterative algorithm for finding a common element of the set of solutions of a mixed equilibrium problem, the set of fixed points of a nonexpansive mapping, and the set of solutions of a variational inclusion in a real Hilbert space. Furthermore, we prove that the proposed iterative algorithm converges strongly to a common element of the above three sets, which is a solution of a certain optimization problem related to a strongly positive bounded linear operator.

MSC:

49J30 Existence of optimal solutions belonging to restricted classes (Lipschitz controls, bang-bang controls, etc.)
47H10 Fixed-point theorems
49M05 Numerical methods based on necessary conditions
Full Text: DOI

References:

[1] Adly S., Perturbed algorithms and sensitivity analysis for a general class of variational inclusions, J. Math. Anal. Appl., 1996, 201(2), 609-630 http://dx.doi.org/10.1006/jmaa.1996.0277; · Zbl 0856.65077
[2] Agarwal R.P., Cho Y.J., Huang N.J., Sensitivity analysis for strongly nonlinear quasi-variational inclusions, Appl. Math. Lett, 2000, 13(6), 19-24 http://dx.doi.org/10.1016/S0893-9659(00)00048-3; · Zbl 0960.47035
[3] Agarwal R.P., Huang N.J., Cho Y.J., Generalized nonlinear mixed implicit quasi-variational inclusions with set-valued mappings, J. Inequal. Appl., 2002, 7(6), 807-828 http://dx.doi.org/10.1155/S1025583402000425; · Zbl 1034.47032
[4] Bauschke H.H., Borwein J.M., On projection algorithms for solving convex feasibility problems, SIAM Rev, 1996, 38(3), 367-426 http://dx.doi.org/10.1137/S0036144593251710; · Zbl 0865.47039
[5] Blum E., Oettli W., From optimization and variational inequalities to equilibrium problems, Math. Student, 1994, 63(1-4), 123-145; · Zbl 0888.49007
[6] Brézis H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Math. Stud., 5, North-Holland, Amsterdam-London, 1973; · Zbl 0252.47055
[7] Ceng L.-C, Yao J.-C, A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Appl. Math., 2008, 214(1), 186-201 http://dx.doi.org/10.1016/j.cam.2007.02.022; · Zbl 1143.65049
[8] Ceng L.-C, Yao J.-C, A relaxed extragradient-like method for a generalized mixed equilibrium problem, a general system of generalized equilibria and a fixed point problem, Nonlinear Anal., 2010, 72(3-4), 1922-1937; · Zbl 1179.49003
[9] Ceng L.-C, Yao J.-C, Convergence and certain control conditions for hybrid viscosity approximation methods, Nonlinear Anal., 2010, 73(7), 2078-2087 http://dx.doi.org/10.1016/j.na.2010.05.036; · Zbl 1229.47106
[10] Chadli O., Konnov I.V., Yao J.C, Descent methods for equilibrium problems in a Banach space, Comput. Math. Appl., 2004, 48(3-4), 609-616 http://dx.doi.org/10.1016/j.camwa.2003.05.011; · Zbl 1057.49009
[11] Chadli O., Schaible S., Yao J.C, Regularized equilibrium problems with application to noncoercive hemivariational inequalities, J. Optim. Theory Appl., 2004, 121(3), 571-596 http://dx.doi.org/10.1023/B:JOTA.0000037604.96151.26; · Zbl 1107.91067
[12] Chadli O., Wong N.C., Yao J.C, Equilibrium problems with applications to eigenvalue problems, J. Optim. Theory Appl., 2003, 117(2), 245-266 http://dx.doi.org/10.1023/A:1023627606067; · Zbl 1141.49306
[13] Chang S.S., Set-valued variational inclusions in Banach spaces, J. Math. Anal. Appl., 2000, 248(2), 438-454 http://dx.doi.org/10.1006/jmaa.2000.6919; · Zbl 1031.49018
[14] Combettes PL., Hilbertian convex feasibility problem: convergence of projection methods, Appl. Math. Optim., 1997, 35(3), 311-330; · Zbl 0872.90069
[15] Combettes PL., Hirstoaga S.A., Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 2005, 6(1), 117-136; · Zbl 1109.90079
[16] Deutsch F., Yamada I., Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings, Numer. Funct. Anal. Optim. 1998, 19(1-2), 33-56; · Zbl 0913.47048
[17] Ding X.P., Perturbed Ishikawa type iterative algorithm for generalized quasivariational inclusions, Appl. Math. Comput, 2003, 141(2-3), 359-373 http://dx.doi.org/10.1016/S0096-3003(02)00261-8; · Zbl 1030.65071
[18] Ding X.P., Sensitivity analysis for generalized nonlinear implicit quasi-variational inclusions, Appl. Math. Lett., 2004, 17(2), 225-235 http://dx.doi.org/10.1016/S0893-9659(04)90036-5; · Zbl 1056.49010
[19] Ding X.P., Parametric completely generalized mixed implicit quasi-variational inclusions involving/i-maximal monotone mappings, J. Comput. Appl. Math., 2005, 182(2), 252-269 http://dx.doi.org/10.1016/j.cam.2004.11.048; · Zbl 1071.49004
[20] Ding X.P., Lin Y.C., Yao J.C, Predictor-corrector algorithms for solving generalized mixed implicit quasi-equilibrium problems, Appl. Math. Mech. (English Ed.), 2006, 27(9), 1157-1164 http://dx.doi.org/10.1007/s10483-006-0901-1; · Zbl 1199.49010
[21] Fang Y.-P., Huang N.-J., H-monotone operator and resolvent operator technique for variational inclusions, Appl. Math. Comput, 2003, 145(2-3), 795-803 http://dx.doi.org/10.1016/S0096-3003(03)00275-3; · Zbl 1030.49008
[22] Fang Y.-P., Huang N.-J., H-accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces, Appl. Math. Lett, 2004, 17(6), 647-653 http://dx.doi.org/10.1016/S0893-9659(04)90099-7; · Zbl 1056.49012
[23] Flåm S.D., Antipin A.S., Equilibrium programming using proximal-like algorithms, Math. Programming, 1997, 78(1), 29-41 http://dx.doi.org/10.1007/BF02614504; · Zbl 0890.90150
[24] Huang N.-J., Mann and Ishikawa type perturbed iterative algorithms for generalized nonlinear implicit quasi-variational inclusions, Comput. Math. Appl, 1998, 35(10), 1-7 http://dx.doi.org/10.1016/S0898-1221(98)00066-2; · Zbl 0999.47057
[25] Jung J.S., Iterative algorithms with some control conditions for quadratic optimizations, Panamer. Math. J., 2006, 16(4), 13-25; · Zbl 1165.47058
[26] Jung J.S., A general iterative scheme for k-strictly pseudo-contractive mappings and optimization problems, Appl. Math. Comput, 2010, 217(12), 5581-5588 http://dx.doi.org/10.1016/j.amc.2010.12.034; · Zbl 1213.65080
[27] Kocourek P., Takahashi W., Yao J.-C, Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces, Taiwanese J. Math., 2010, 14(6), 2497-2511; · Zbl 1226.47053
[28] Konnov I.V., Schaible S., Yao J.C., Combined relaxation method for mixed equilibrium problems, J. Optim. Theory Appl, 2005, 126(2), 309-322 http://dx.doi.org/10.1007/s10957-005-4716-0; · Zbl 1110.49028
[29] Lemaire B., Which fixed point does the iteration method select?, In: Recent Advances in Optimization, Trier, 1996, Lecture Notes in Econom. and Math. Systems, 452, Springer, Berlin, 1997, 154-167; · Zbl 0882.65042
[30] Lin L.-J., Variational inclusions problems with applications to Ekelands variational principle, fixed point and optimization problems, J. Global Optim., 2007, 39(4), 509-527 http://dx.doi.org/10.1007/s10898-007-9153-1; · Zbl 1190.90212
[31] Moudafi A., Viscosity approximation methods for fixed-point problems, J. Math. Anal. Appl., 2000, 241(1), 46-55 http://dx.doi.org/10.1006/jmaa.1999.6615; · Zbl 0957.47039
[32] Noor M.A., Generalized set-valued variational inclusions and resolvent equation, J. Math. Anal. Appl., 1998, 228(1), 206-220 http://dx.doi.org/10.1006/jmaa.1998.6127; · Zbl 1031.49016
[33] Peng J.-W., Wang Y, Shyu D.S., Yao J.-C, Common solutions of an iterative scheme for variational inclusions, equilibrium problems and fixed point problems, J. Inequal. Appl., 2008, ID 720371; · Zbl 1161.65050
[34] Peng J.-W., Yao J.-C, A new hybrid-extragradient method for generalized mixed equilibrium problems, fixed point problems and variational inequality problems, Taiwanese J. Math., 2008, 12(6), 1401-1432; · Zbl 1185.47079
[35] Plubtieng S., Punpaeng R., A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., 2007, 336(1), 455-469 http://dx.doi.org/10.1016/j.jmaa.2007.02.044; · Zbl 1127.47053
[36] Robinson S.M., Generalized equations and their solutions. I: Basic theory, Math. Programming Stud., 1979, 10, 128-141; · Zbl 0404.90093
[37] Rockafellar R.T., Monotone operators and the proximal point algorithm, SIAM J. Control Optimization, 1976, 14(5), 877-898 http://dx.doi.org/10.1137/0314056; · Zbl 0358.90053
[38] Shimoji K., Takahashi W., Strong convergence to common fixed points of infinite nonexpansive mappings and applications, Taiwanese J. Math., 2001, 5(2), 387-404; · Zbl 0993.47037
[39] Suzuki T, Strong convergence of Krasnoselskii and Manns type sequences for one-parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl., 2005, 305(1), 227-239 http://dx.doi.org/10.1016/j.jmaa.2004.11.017; · Zbl 1068.47085
[40] Tada A., Takahashi W., Strong convergence theorem for an equilibrium problem and a nonexpansive mapping, In: Nonlinear Analysis and Convex Analysis, Yokohama Publishers, Yokohama, 2007, 609-617; · Zbl 1122.47055
[41] Takahashi S., Takahashi W., Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., 2007, 331(1), 506-515 http://dx.doi.org/10.1016/j.jmaa.2006.08.036; · Zbl 1122.47056
[42] Takahashi S., Takahashi W., Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space, Nonlinear Anal., 2008, 69(3), 1025-1033 http://dx.doi.org/10.1016/j.na.2008.02.042; · Zbl 1142.47350
[43] Verma R.U., A-monotonicity and applications to nonlinear variational inclusion problems, J. Appl. Math. Stoch. Anal., 2004, 2, 193-195 http://dx.doi.org/10.1155/S1048953304403013; · Zbl 1064.49012
[44] Verma R.U., General system of (A,η)-monotone variational inclusion problems based on generalized hybrid iterative algorithm, Nonlinear Anal. Hybrid Syst., 2007, 1(3), 326-335 http://dx.doi.org/10.1016/j.nahs.2006.07.002; · Zbl 1117.49014
[45] Xu H.K., Iterative algorithms for nonlinear operators, J. London Math. Soc, 2002, 66(1), 240-256 http://dx.doi.org/10.1112/S0024610702003332; · Zbl 1013.47032
[46] Xu H.-K., Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 2004, 298(1), 279-291 http://dx.doi.org/10.1016/j.jmaa.2004.04.059; · Zbl 1061.47060
[47] Yao Y, Liou Y.-C, Lee C, Wong M.-M., Convergence theorem for equilibrium problems and fixed point problems, Fixed Point Theory, 2009, 10(2), 347-363; · Zbl 1225.47120
[48] Yao Y., Liou Y.-C., Yao J.-C., Convergence theorem for equilibrium problems and fixed point problems of infinite family of nonexpansive mappings, Fixed Point Theory Appl. 2007, ID 64363; · Zbl 1153.54024
[49] Zeng L.-C., Wu S.-Y., Yao J.-C., Generalized KKM theorem with applications to generalized minimax inequalities and generalized equilibrium problems, Taiwanese J. Math., 2006, 10(6), 1497-1514; · Zbl 1121.49005
[50] Zhang S.-S., Lee J.H.W., Chan C.K., Algorithms of common solutions to quasi variational inclusion and fixed point problems, Appl. Math. Mech. (English Ed.), 2008, 29(5), 571-581 http://dx.doi.org/10.1007/s10483-008-0502-y; · Zbl 1196.47047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.