×

On a new iterative method for solving equilibrium problems and fixed point problems. (English) Zbl 07884575

Summary: A new iterative algorithm is proposed for finding a common solution of an equilibrium problem and a fixed point problem. Then, a strong convergence theorem is proved. As a consequence, they can be obtained some strong convergence theorems for an equilibrium problem and a split common fixed point problem. The obtained theorems can be applied to solve an equilibrium problem and a split common null point problem. The results presented in this paper extend and improve some corresponding ones in the literature. Finally, a numerical example is given to show the validity of the algorithm.

MSC:

47H10 Fixed-point theorems
47J25 Iterative procedures involving nonlinear operators
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
65J15 Numerical solutions to equations with nonlinear operators
Full Text: DOI

References:

[1] K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal., 67(2007), 2350-2360. · Zbl 1130.47045
[2] E. Blum and W. Oettli, From optimization and variatinal inequalities to equilibrium problems, Math. Student., 63(1994), 123-145. · Zbl 0888.49007
[3] C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Probl., 18(2002), 441-453. · Zbl 0996.65048
[4] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20(2004), 103-120. · Zbl 1051.65067
[5] Y. Censor and A. Segal, The split common fixed point problem for directed operators, Convex J. Anal., 16(2009), 587-600. · Zbl 1189.65111
[6] L.C. Ceng, X. Li, X. Qin, Parallel proximal point methods for systems of vector optimization problems on Hadamard manifolds without convexity, Optimization, 69(2020), 357-383. · Zbl 1432.90120
[7] L.C. Ceng, A. Petruşel, X. Qin, J.C. Yao, A modified inertial subgradient extragradient method for solving pseudomonotone variational inequalities and common fixed point problems, Fixed Point Theory, 21(2020), 93-108. · Zbl 1477.47060
[8] L.C. Ceng, A. Petruşel, J.C. Yao, Y. Yao, Systems of variational inequalities with hierarchi-cal variational inequality constraints for Lipschitzian pseudocontractions, Fixed Point Theory, 20(2019), 113-133. · Zbl 1430.49004
[9] L.C. Ceng, C.F. Wen, Systems of variational inequalities with hierarchical variational inequality constraints for asymptotically nonexpansive and pseudocontractive mappings, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 113(2019), 2431-2447. · Zbl 1420.49010
[10] L.C. Ceng, Q. Yuan, Composite inertial subgradient extragradient methods for variational in-equalities and fixed point problems, J. Inequal. Appl., 2019(2019), 274. · Zbl 1499.47024
[11] P.I. Combettes, S.A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6(2005), 117-136. · Zbl 1109.90079
[12] S. Hashemi Sababe and M. Yazdi, A hybrid viscosity approximation method for a common solution of a general system of variational inequalities, an equilibrium problem, and fixed point problems, J. Comput. Math., 41(1) (2023), 153-172. · Zbl 1516.47117
[13] K.R. Kazmi and S.H. Rizvi, An iterative method for split variational inclusion problem and fixed point problem for a nonexpansive mapping, Optim. Lett., 8(2014), 1113-1124. · Zbl 1320.90104
[14] P.E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and non-strictly convex minimization, Set-Valued Anal., 16(2008), 899-912. · Zbl 1156.90426
[15] P.E. Maingé, A hybrid extragradient-viscosity method for monotone operators and fixed point problems, SIAM J. Control Optim., 47(2008), 1499-1515. · Zbl 1178.90273
[16] P.E. Maingé, The viscosity approximation process for quasi-nonexpansive mappings in Hilbert spaces, Comput. Math. Appl., 59(2010), 74-79. · Zbl 1189.49011
[17] A. Moudafi, The split common fixed point problem for demicontractive mappings, Inverse Probl., 26(2010), 055007. · Zbl 1219.90185
[18] A. Moudafi, Viscosity-type algorithms for the split common fixed-point problem, Adv. Nonlinear Var. Equal., 16(2013), 61-68. · Zbl 1319.47057
[19] J. Munkong, B.V. Dinh, K. Ungchittrakool, An inertial multi-step algorithm for solving equi-librium problems, J. Nonlinear Convex Anal., 21(9)(2020), 1981-1993. · Zbl 1487.47110
[20] J. Munkong, B.V. Dinh, K. Ungchittrakool, An inertial extragradient method for solving bilevel equilibrium problems, Carpathian J. Math., 36(2020), no. 1, 91-107. · Zbl 1478.65053
[21] J. Munkong, K. Ungchittrakool, An inertial extragradient subgradient method for solving bilevel equilibrium problems, J. Comput. Anal. Appl., 29(5)(2021), 995-1010.
[22] S. Plubtieg and R. Punpaeng, A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., 336(2007), 455-469. · Zbl 1127.47053
[23] S. Plubtieng and K. Ungchittrakool, Viscosity approximation methods for equilibrium problems and zeroes of an accretive operator in Hilbert spaces, Int. Math. Forum, 3(28)(2008), 1387-1400. · Zbl 1203.47069
[24] A. Razani and M. Yazdi, Viscosity approximation method for equilibrium and fixed point prob-lems, Fixed Point Theory, 14(2)(2013), 455-472. · Zbl 1292.47054
[25] S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., 331(2007), 506-515. · Zbl 1122.47056
[26] D.V. Thong, Viscosity approximation methods for solving fixed-point problems and split common fixed-point problems, J. Fixed Point Theory Appl., 19(2017), 1481-1499. · Zbl 1453.47021
[27] F. Wang and H.K. Xu, Cyclic algorithms for split feasibility problems in Hilbert spaces, Non-linear Anal., 74(2011), 4105-4111. · Zbl 1308.47079
[28] S. Wang, C. Hu and G. Chia, Strong convergence of a new composite iterative method for equilibrium problems and fixed point problems, Appl. Math. Comput., 215(2010), 3891-3898. · Zbl 1225.47116
[29] Y. Wang, F. Wang and H.K. Xu, Error sensitivity for strongly convergent modifications of the proximal point algorithm, J. Optim. Theory Appl., 168(2016), 901-916. · Zbl 1345.47052
[30] H.K. Xu, A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility prob-lem, Inverse Probl., 22(2006), 2021-2034. · Zbl 1126.47057
[31] H.K. Xu, Iterative methods for the split feasibility problem in infinite dimensional Hilbert spaces, Inverse Probl., 26(2010), 105018. · Zbl 1213.65085
[32] I. Yamada and N. Ogura, Hybrid steepest descent method for variational inequality operators over the problem certain fixed point set of quasi-nonexpansive mappings, Numer. Funct. Anal. Optim., 25(2004), 619-655. · Zbl 1095.47049
[33] Y. Yao, Y.-C. Liou and M. Postolache, Self-adaptive algorithms for the split problem of the demicontractive operators, Optimization, 67(2018), 1309-1319. · Zbl 1433.90188
[34] Y. Yao, J.-C. Yao, Y.-C. Liou and M. Postolache, Iterative algorithms for split common fixed points of demicontractive operators without priori knowledge of operator norms, Carpathian J. Math., 34(2018), 459-466. · Zbl 1449.47119
[35] M. Yazdi and S. Hashemi Sababe, A new extragradient method for equilibrium, split feasibility and fixed point problems, J. Nonlinear Convex Anal. 22(4) (2021), no. 4, 759-773. · Zbl 1494.47118
[36] M. Yazdi and S. Hashemi Sababe, Strong convergence theorem for a general system of vari-ationalninequalities, equilibrium problems, and fixed point problems, Fixed Point Theory. 23(2)(2022), 763-778. · Zbl 1538.47130
[37] J. Zhao and S. He, Strong convergence of the viscosity approximation process for the split common fixed-point problem of quasi-nonexpansive mapping, J. Appl. Math., 12(2012), Article ID 438023 (2012). · Zbl 1319.47065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.