×

Iterative algorithms for finding common solutions of variational inequalities and systems of equilibrium problems and fixed points of families and semigroups of nonexpansive mappings. (English) Zbl 1225.47110

Summary: We introduce iterative algorithms for finding a common element of the set of solutions of a system of equilibrium problems and of the set of fixed points of a finite family and a left amenable semigroup of nonexpansive mappings in a Hilbert space. We prove the strong convergence of the proposed iterative algorithm to the unique solution of a variational inequality, which is the optimality condition for a minimization problem. Our results extend, for example, the recent result of V. Colao, G. Marino and H. -K. Xu [J. Math. Anal. Appl. 344, No. 1, 340–352 (2008; Zbl 1141.47040)] to systems of equilibrium problems.

MSC:

47J25 Iterative procedures involving nonlinear operators
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
47H10 Fixed-point theorems
47J20 Variational and other types of inequalities involving nonlinear operators (general)
43A07 Means on groups, semigroups, etc.; amenable groups
47H20 Semigroups of nonlinear operators

Citations:

Zbl 1141.47040
Full Text: DOI

References:

[1] Atsushiba, S.; Takahashi, W., Approximation common fixed points of nonexpansive semigroups by the Mann iteration process, Ann. Univ. Mariae Curie-Sklodowska, 51, 1-16 (1997) · Zbl 1012.47033
[2] Atsushiba, S.; Takahashi, W., Strong convergence theorems for a finite family of nonexpansive mappings and applications, B.N. Prasad Birth Centenary Commemoration Volume. B.N. Prasad Birth Centenary Commemoration Volume, Indian J. Math., 41, 3, 435-453 (1999) · Zbl 1055.47514
[3] Bauschke, H. H.; Borwein, J. M., On projection algorithms for solving convex feasibility problems, SIAM Rev., 38, 367-426 (1996) · Zbl 0865.47039
[4] Blum, E.; Oettli, W., From optimization and variational inequalities to equilibrium problems, Math. Student, 63, 123-145 (1994) · Zbl 0888.49007
[5] Bruck, R. E., On the convex approximation property and the asymptotic behavior of nonlinear contractions in Banach spaces, Israel J. Math., 38, 304-314 (1981) · Zbl 0475.47037
[6] Ceng, L. C.; Cubiotti, P.; Yao, J. C., Strong convergence theorems for finitely many nonexpansive mappings and applications, Nonlinear Anal., 67, 1464-1473 (2007) · Zbl 1123.47044
[7] Colao, V.; Marino, G.; Xu, H. K., An Iterative Method for finding common solutions of equilibrium and fixed point problems, J. Math. Anal. Appl., 344, 340-352 (2008) · Zbl 1141.47040
[8] Combettes, P. L., Quasi-Fejerian analysis of some optimization algorithms, (Butnariu, D.; Censor, Y.; Reich, S., Inherently Parallel Algorithms for Feasibility and Optimization (2001), Elsevier: Elsevier New York), 115-152 · Zbl 0992.65065
[9] Combettes, P. L., The foundations of set theoretic estimation, Proc. IEEE, 81, 182-208 (1993)
[10] Combettes, P. L.; Hirstoaga, S. A., Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6, 1, 117-136 (2005) · Zbl 1109.90079
[11] Deutsch, F.; Yamada, I., Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings, Numer. Funct. Anal. Optim., 19, 33-56 (1998) · Zbl 0913.47048
[12] Gopfert, A.; Riahi, H.; Tammer, C.; Zalinescu, C., Variational Methods in Partially Ordered Spaces (2003), Springer-Verlag: Springer-Verlag New York · Zbl 1140.90007
[13] N. Hadjisavvas, H. Khatibzadeh, Maximal monotonicity of bifunctions, Optimization (in press); N. Hadjisavvas, H. Khatibzadeh, Maximal monotonicity of bifunctions, Optimization (in press) · Zbl 1250.47050
[14] Hirano, N.; Kido, K.; Takahashi, W., Nonexpansive retractions and nonlinear ergodic theorems in Banach spaces, Nonlinear Anal., 12, 1269-1281 (1988) · Zbl 0679.47031
[15] Iusem, A. N.; De Pierro, A. R., On the convergence of Hans method for convex programming with quadratic objective, Math. Program. Ser. B, 52, 265-284 (1991) · Zbl 0744.90066
[16] Kikkawa, M.; Takahashi, W., Weak and strong convergence of an implicit iterative process for a countable family of nonexpansive mappings in Banach spaces, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 58, 69-78 (2004) · Zbl 1107.47056
[17] Lau, A. T.; Shioji, N.; Takahashi, W., Existences of nonexpansive retractions for amenable semigroups of nonexpansive mappings and nonlinear ergodic theorems in Banach spaces, J. Funct. Anal., 161, 62-75 (1999) · Zbl 0923.47038
[18] Marino, G.; Xu, H. K., A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 318, 43-52 (2006) · Zbl 1095.47038
[19] Moudafi, A., Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., 241, 46-55 (2000) · Zbl 0957.47039
[20] Plubtieng, S.; Punpaeng, R., A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., 336, 1, 455-469 (2007) · Zbl 1127.47053
[21] Saeidi, S., Existence of ergodic retractions for semigroups in Banach spaces, Nonlinear Anal., 69, 3417-3422 (2008) · Zbl 1166.47055
[22] Shimizu, T.; Takahashi, W., Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl., 211, 71-83 (1997) · Zbl 0883.47075
[23] Suzuki, T., Strong convergence of Krasnoselskii and Mann’s type sequences for one-parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl., 305, 1, 227-239 (2005) · Zbl 1068.47085
[24] Takahashi, W., A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc., 81, 253-256 (1981) · Zbl 0456.47054
[25] Takahashi, W., Nonlinear Functional Analysis (2000), Yokohama Publishers: Yokohama Publishers Yokohama · Zbl 0997.47002
[26] Takahashi, W., Viscosity approximation methods for countable families of nonexpansive mappings in Banach spaces, Nonlinear Anal. (2008)
[27] Takahashi, W., Weak and strong convergence theorems for families of nonexpansive mappings and their applications, Ann. Univ. Mariae Curie-Sklodowska, 51, 277-292 (1997) · Zbl 1012.47029
[28] Takahashi, W.; Shimoji, K., Convergence theorems for nonexpansive mappings and feasibility problems, Math. Comput. Modelling, 32, 1463-1471 (2000) · Zbl 0971.47040
[29] Takahashi, S.; Takahashi, W., Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., 331, 1, 506-515 (2007) · Zbl 1122.47056
[30] Xu, H. K., An iterative approach to quadratic optimization, J. Optim. Theory Appl., 116, 659-678 (2003) · Zbl 1043.90063
[31] Xu, H. K., Iterative algorithms for nonlinear operators, J. London Math. Soc., 66, 240-256 (2002) · Zbl 1013.47032
[32] Xu, H. K., Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl., 298, 279-291 (2004) · Zbl 1061.47060
[33] Yamada, I., The hybrid steepest descent method for the variational inequality problem of the intersection of fixed point sets of nonexpansive mappings, (Butnariu, D.; Censor, Y.; Reich, S., Inherently Parallel Algorithm for Feasibility and Optimization (2001), Elsevier), 473-504 · Zbl 1013.49005
[34] Yamada, I.; Ogura, N.; Yamashita, Y.; Sakaniwa, K., Quadratic approximation of fixed points of nonexpansive mappings in Hilbert spaces, Numer. Funct. Anal. Optim., 19, 165-190 (1998) · Zbl 0911.47051
[35] Yao, Y., A general iterative method for a finite family of nonexpansive mappings, Nonlinear Anal., 66, 2676-2687 (2007) · Zbl 1129.47058
[36] Youla, D. C., Mathematical theory of image restoration by the method of convex projections, (Stark, H., Image Recovery: Theory and Applications (1987), Academic Press: Academic Press Florida), 29-77
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.