×

Seismic scalar wave equation with variable coefficients modeling by a new convolutional differentiator. (English) Zbl 1216.86004

Summary: Studying seismic wavefields in the Earth’s interior requires an accurate calculation of wave propagation using accurate and efficient numerical techniques. In this paper, we present an alternative method for accurately and efficiently modeling seismic wavefields using a convolutional generalized orthogonal polynomial differentiator. Our approach uses optimization and truncation to form a localized operator. This preserves the fine structure of the wavefield in complex media and avoids non-causal interaction when parameter discontinuities are present in the medium. We demonstrate this approach for scalar wavefield modeling in heterogeneous media and conclude that the method could be readily extended to elastic wavefield calculations. Our numerical results indicate that this method can suppress numerical dispersion and allow for the study of wavefields in heterogeneous structures. The results hold promise not only for future seismic studies, but also for any field that requires high-precision numerical solution of partial differential equation with variable coefficients.

MSC:

86A15 Seismology (including tsunami modeling), earthquakes
35Q86 PDEs in connection with geophysics
Full Text: DOI

References:

[1] Bayliss, A.; Jordan, K. E.; LeMesurier, B. J.; Turkel, E., A fourth-order accurate finite-difference scheme for the computation of elastic waves, Bull. Seism. Soc. Am., 76, 1115-1132 (1986)
[2] Levander, A. R., Fourth-order finite-difference P-SV seismograms, Geophysics, 53, 1425-1435 (1988)
[3] Zhang, Z. J.; Wang, G. J.; Harris, J. M., Multi-component wave-field simulation in viscous extensively dilatancy anisotropic media, Phys. Earth Planet. Interiors, 114, 25-38 (1999)
[4] Komatitsch, D.; Vilotte, J. P., The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures, Bull. Seism. Soc. Am., 88, 368-392 (1998) · Zbl 0974.74583
[5] Komatitsch, D.; Tromp, J., Spectral-element simulation of global seismic wave propagation—I. Validation, Geophys. J. Int., 149, 390-412 (2002)
[6] Fornberg, B., High order finite differences and pseudospectral method on staggered grids, SIAM J. Numer. Anal., 27, 904-918 (1990) · Zbl 0705.65076
[7] Chen, H. W., Staggered grid pseudospectral simulation in viscoacoustic wavefield simulation, J. Acoust. Soc. Am., 100, 120-131 (1996)
[8] Zhao, Z.; Xu, J.; Shigeki, H., Staggered grid real value FFT differentiation operator and its application on wave propagation simulation in the heterogeneous medium, Chinese J. Geophys., 46, 2, 234-240 (2003), (in Chinese)
[9] Holberg, O., Computational aspects of the choice of operator and sampling interval for numerical differentiation in large-scale simulation of wave phenomena, Geophys. Prosp., 35, 629-655 (1987)
[10] Geller, R. J.; Takeuchi, N., Optimally accurate second-order time-domain finite difference scheme for the elastic equation of motion: one-dimensional case, Geophys. J. I, 135, 48-62 (1998)
[11] Takeuchi, N.; Geller, R. J., Optimally accurate second-order time-domain finite difference scheme for computing synthetic seismograms in 2-D and 3-D media, Phys. Earth Planet. Interiors, 119, 99-131 (2000)
[12] Moczo, P.; Kristek, J.; Vavrycuk, V.; Archuleta, R. J.; Halada, L., 3D heterogeneous staggered-grid finite-difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities, Bull. Seism. Soc. Am., 92, 3042-3066 (2002)
[13] Mora, P., Elastic finite-difference with convolutional operators, Stanford Exploration Project, 48, 272-289 (1986)
[14] Etgen, J. T., Finite-difference elastic anisotropic wave propagation, Stanford Exploration Project, 56, 23-57 (1987)
[15] Kosloff, D.; Kessler, D., Seismic numerical modeling, (Desaubies, Y.; Tarantla, A.; Zinn-Justin, J., Oceanographic and Geophysical Tomography (1990), Elsevier Sci. Publ.: Elsevier Sci. Publ. Amsterdam), 249-312
[16] Zhou, B.; Greenhalgh, S. A., Seismic scalar wave equation modeling by a convolutional differentiator, Bull. Seism. Soc. Am., 82, 289-303 (1982)
[17] Yomogida, K.; Etgen, J. T., 3-D wave propagation in the Los Angeles Basin for the Whittier-Narrows earthquake, Bull. Seism. Soc. Am., 83, 1325-1344 (1993)
[18] Wang, S. Q.; Yang, D. H.; Yang, K. D., Compact finite difference scheme for elastic equations, J. Tsinghua Univ. (Sci. & Tech.), 42, 1128-1131 (2002) · Zbl 1116.74436
[19] Pitarka, A., 3D elastic finite-difference modeling of seismic motion using staggered grids with nonuniform spacing, Bull. Seism. Soc. Am., 89, 54-68 (1999)
[20] Yang, D. H.; Peng, J. M.; Lu, M., An nearly-analytic discrete method for wave-fieldsimulation in 2D porous media, Commun. Comput. Phys., 1, 528-547 (2006) · Zbl 1137.76455
[21] Yang, D. H.; Song, G. J.; Lu, M., Optimally accurate nearly analytic discrete scheme for wave-field simulation in 3D anisotropic media, Bull. Seism. Soc. Am., 97, 1557-1569 (2007)
[22] Xie, J., Mathematical Method for Geophysical Data Process (1981), Geological Publishing House: Geological Publishing House Beijing, pp. 97-104 (in Chinese)
[23] Kosloff, D.; Reshef, M.; Loewenthal, D., Elastic wave calculations by Fourier mathod, Bull. Seism. Soc. Am., 74, 875-891 (1984)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.