×

The effective field theorist’s approach to gravitational dynamics. (English) Zbl 1359.83024

Summary: We review the effective field theory (EFT) approach to gravitational dynamics. We focus on extended objects in long-wavelength backgrounds and gravitational wave emission from spinning binary systems. We conclude with an introduction to EFT methods for the study of cosmological large scale structures.

MSC:

83C47 Methods of quantum field theory in general relativity and gravitational theory
85A05 Galactic and stellar dynamics
83C35 Gravitational waves
85A15 Galactic and stellar structure

Software:

NINJA

References:

[1] Einstein, A., Die feldgleichungen der gravitation, (Sitzungsberichte der Koeniglich Preussische Akademie der Wissenschaften zu Berlin. Sitzungsberichte der Koeniglich Preussische Akademie der Wissenschaften zu Berlin, Sitzung der physikalisch-mathematischen, Klasse von, 25 November (1915)), 844-847 · JFM 45.1120.02
[2] Kerr, R. P., Gravitational field of a spinning mass as an example of algebraically special metrics, Phys. Rev. Lett., 11, 237-238 (1963) · Zbl 0112.21904
[3] Goldberger, W. D.; Rothstein, I. Z., An effective field theory of gravity for extended objects, Phys. Rev. D, 73, Article 104029 pp. (2006), arXiv:hep-th/0409156
[4] Goldberger, W. D.; Rothstein, I. Z., Towers of gravitational theories, Gen. Relativity Gravitation. Gen. Relativity Gravitation, Internat. J. Modern Phys. D, 15, 2293-1546 (2006), arXiv:hep-th/0605238 · Zbl 1117.83094
[5] Porto, R. A., Post-Newtonian corrections to the motion of spinning bodies in NRGR, Phys. Rev. D, 73, Article 104031 pp. (2006), arXiv:gr-qc/0511061
[6] Porto, R. A., An effective field theory of gravity for spinning extended objects (2007), Carnegie Mellon U., (Ph.D. thesis)
[7] Caswell, W.; Lepage, G., Effective Lagrangians for bound state problems in QED, QCD, and other field theories, Phys. Lett. B, 167, 437 (1986)
[8] Luke, M. E.; Manohar, A. V.; Rothstein, I. Z., Renormalization group scaling in nonrelativistic QCD, Phys. Rev. D, 61, Article 074025 pp. (2000), arXiv:hep-ph/9910209
[9] Isgur, N.; Wise, M. B., Weak decays of heavy mesons in the static quark approximation, Phys. Lett. B, 232, 113-117 (1989)
[10] Grinstein, B., The static quark effective theory, Nuclear Phys. B, 339, 253-268 (1990)
[11] Manohar, A. V.; Wise, M. B., Heavy quark physics, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol., 10, 1-191 (2000)
[12] Gupta, S. N., Gravitation and electromagnetism, Phys. Rev., 96, 1683-1685 (1954) · Zbl 0056.44103
[13] Kraichnan, R. H., Special-Relativistic derivation of generally covariant gravitation theory, Phys. Rev., 98, 1118-1122 (1955) · Zbl 0068.40103
[14] Feynman, R. P., Quantum theory of gravitation, Acta Phys. Polon., 24, 697-722 (1963)
[15] Weinberg, S., Photons and gravitons in s matrix theory: derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev., 135, B1049-B1056 (1964) · Zbl 0144.23702
[16] Weinberg, S., Infrared photons and gravitons, Phys. Rev., 140, B516-B524 (1965)
[17] Iwasaki, Y., Fourth-order gravitational potential based on quantum field theory, Lett. Nuovo Cim., 1S2, 783-786 (1971), Lett. Nuovo Cimento 1, 783 (1971) http://dx.doi.org/10.1007/BF02770190
[18] Iwasaki, Y., Quantum theory of gravitation vs. classical theory.—fourth-order potential, Progr. Theoret. Phys., 46, 1587-1609 (1971)
[19] Hiida, K.; Okamura, H., Gauge transformation and gravitational potentials, Progr. Theoret. Phys., 47, 1743-1757 (1972)
[20] Duff, M. J., Quantum tree graphs and the Schwarzschild solution, Phys. Rev. D, 7, 2317-2326 (1973)
[21] Ohta, T.; Okamura, H.; Hiida, K.; Kimura, T., Higher order gravitational potential for many-body system, Progr. Theoret. Phys., 51, 1220-1238 (1974)
[22] Maheshwari, A.; Nissimov, E. R.; Todorov, I. T., Classical and quantum two-body problem in general relativity, Lett. Math. Phys., 5, 359 (1981)
[23] Damour, T.; Schaefer, G., Lagrangians forn point masses at the second post-Newtonian approximation of general relativity, Gen. Relativity Gravitation, 17, 879-905 (1985) · Zbl 0568.70014
[24] Damour, T.; Esposito-Farese, G., Tensor multiscalar theories of gravitation, Classical Quantum Gravity, 9, 2093-2176 (1992) · Zbl 0780.53054
[25] Damour, T.; Esposito-Farese, G., Testing gravity to second postNewtonian order: A field theory approach, Phys. Rev. D, 53, 5541-5578 (1996), arXiv:gr-qc/9506063
[26] Goldberger, W. D.; Rothstein, I. Z., Dissipative effects in the worldline approach to black hole dynamics, Phys. Rev. D, 73, Article 104030 pp. (2006), arXiv:hep-th/0511133
[27] Porto, R. A., Absorption effects due to spin in the worldline approach to black hole dynamics, Phys. Rev. D, 77, Article 064026 pp. (2008), arXiv:0710.5150
[28] Goldberger, W. D.; Ross, A., Gravitational radiative corrections from effective field theory, Phys. Rev. D, 81, Article 124015 pp. (2010), arXiv:0912.4254
[29] Ross, A., Multipole expansion at the level of the action, Phys. Rev. D, 85, Article 125033 pp. (2012), arXiv:1202.4750
[30] Goldberger, W. D.; Ross, A.; Rothstein, I. Z., Black hole mass dynamics and renormalization group evolution, Phys. Rev. D, 89, 12, Article 124033 pp. (2014), arXiv:1211.6095
[31] Galley, C. R.; Tiglio, M., Radiation reaction and gravitational waves in the effective field theory approach, Phys. Rev. D, 79, Article 124027 pp. (2009), arXiv:0903.1122
[32] Galley, C. R.; Leibovich, A. K.; Porto, R. A.; Ross, A., The tail effect in gravitational radiation-reaction: time non-locality and renormalization group evolution, Phys. Rev. D (2016), in press. arXiv:1511.07379
[33] Abbott, B. P., All-sky search for long-duration gravitational wave transients with initial LIGO, Phys. Rev. D, 93, 4, Article 042005 pp. (2016), arXiv:1511.04398
[34] Aasi, J., Advanced LIGO, Classical Quantum Gravity, 32, Article 074001 pp. (2015), arXiv:1411.4547
[35] Acernese, F., Advanced Virgo: a second-generation interferometric gravitational wave detector, Classical Quantum Gravity, 32, 2, Article 024001 pp. (2015), arXiv:1408.3978
[36] Abbott, B. P., GW150914: The Advanced LIGO Detectors in the Era of First Discoveries
[37] Amaro-Seoane, P., eLISA/NGO: Astrophysics and cosmology in the gravitational-wave millihertz regime, GW Notes, 6, 4-110 (2013)
[38] Punturo, M., The Einstein telescope: A third-generation gravitational wave observatory, Classical Quantum Gravity, 27, Article 194002 pp. (2010)
[39] Somiya, K., Detector configuration of KAGRA: The Japanese cryogenic gravitational-wave detector, Classical Quantum Gravity, 29, Article 124007 pp. (2012), arXiv:1111.7185
[40] Graham, P. W.; Hogan, J. M.; Kasevich, M. A.; Rajendran, S., A new method for gravitational wave detection with atomic sensors, Phys. Rev. Lett., 110, Article 171102 pp. (2013), arXiv:1206.0818
[41] Hobbs, G., The international pulsar timing array project: using pulsars as a gravitational wave detector, Classical Quantum Gravity, 27, Article 084013 pp. (2010), arXiv:0911.5206
[42] Manchester, R. N., The Parkes pulsar timing array project, Publ. Astron. Soc. Aust., 30, 17 (2013), arXiv:1210.6130
[43] Arzoumanian, Z., Gravitational waves from individual supermassive black hole binaries in circular orbits: Limits from the North American nanohertz observatory for gravitational waves, Astrophys. J., 794, 2, 141 (2014), arXiv:1404.1267
[44] Babak, S., European pulsar timing array limits on continuous gravitational waves from individual supermassive black hole binaries, Mon. Not. R. Astron. Soc., 455, 2, 1665-1679 (2016), arXiv:1509.02165
[45] Shannon, R. M., Gravitational waves from binary supermassive black holes missing in pulsar observations, Science, 349, 6255, 1522-1525 (2015), arXiv:1509.07320 · Zbl 1355.85008
[46] Hui, L.; McWilliams, S. T.; Yang, I.-S., Binary systems as resonance detectors for gravitational waves, Phys. Rev. D, 87, 8, Article 084009 pp. (2013), arXiv:1212.2623
[47] Abbott, B. P., Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett., 116, 6, Article 061102 pp. (2016), arXiv:1602.03837
[48] Sathyaprakash, B. S.; Schutz, B. F., Physics, astrophysics and cosmology with gravitational waves, Living Rev. Rel., 12, 2 (2009), arXiv:0903.0338 · Zbl 1166.85002
[49] Buonanno, A.; Sathyaprakash, B. S., Sources of gravitational waves: Theory and observations, (Ashtekar, Abhay; Berger, Beverly K.; Isenberg, James; MacCallum, Malcolm A. H., General Relativity and Gravitation: A Centennial Perspective (2014))
[50] Lehner, L.; Pretorius, F., Numerical relativity and astrophysics, Ann. Rev. Astron. Astrophys., 52, 661-694 (2014), arXiv:1405.4840
[51] Aasi, J., The NINJA-2 project: Detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations, Classical Quantum Gravity, 31, Article 115004 pp. (2014), arXiv:1401.0939
[52] Kumar, P., Accuracy and precision of gravitational-wave models of inspiraling neutron star—black hole binaries with spin: comparison with numerical relativity in the low-frequency regime, Phys. Rev. D, 92, 10, Article 102001 pp. (2015), arXiv:1507.00103
[53] Choptuik, M. W.; Lehner, L.; Pretorius, F., Probing strong field gravity through numerical simulations, (Ashtekar, A.; Berger, B.; Isenberg, J.; MacCallum, M. A.H., General Relativity and Gravitation: A Centennial Perspective (2015), Cambridge University Press)
[54] Sperhake, U., The high-energy collision of two black holes, Phys. Rev. Lett., 101, Article 161101 pp. (2008), arXiv:0806.1738
[55] Cardoso, V., NR/HEP: roadmap for the future, Classical Quantum Gravity, 29, Article 244001 pp. (2012), arXiv:1201.5118 · Zbl 1260.83001
[56] Healy, J.; Ruchlin, I.; Lousto, C. O., High energy collisions of black holes numerically revisited
[57] Blanchet, L.; Damour, T.; Esposito-Farese, G.; Iyer, B. R., Gravitational radiation from inspiralling compact binaries completed at the third post-Newtonian order, Phys. Rev. Lett., 93, Article 091101 pp. (2004), arXiv:gr-qc/0406012
[58] Damour, T.; Jaranowski, P.; Schaefer, G., Equivalence between the adm-hamiltonian and the harmonic coordinates approaches to the third postNewtonian dynamics of compact binaries, Phys. Rev. D. Phys. Rev. D, Phys. Rev. D, 66, Article 029901 pp. (2002), (Erratum). http://dx.doi.org/10.1103/PhysRevD.66.029901
[59] Itoh, Y.; Futamase, T., New derivation of a third postNewtonian equation of motion for relativistic compact binaries without ambiguity, Phys. Rev. D, 68, Article 121501 pp. (2003), arXiv:gr-qc/0310028
[60] Blanchet, L., Gravitational radiation from post-Newtonian sources and inspiralling compact binaries, Living Rev. Rel., 17, 2 (2014), arXiv:1310.1528 · Zbl 1316.83003
[61] Abbott, B. P., Properties of the binary black hole merger GW150914
[62] McClintock, J. E.; Narayan, R.; Gou, L.; Penna, R. F.; Steiner, J. A., Measuring the spins of stellar black holes: A progress report, AIP Conf. Proc., 1248, 101 (2010)
[63] Taracchini, A., Effective-one-body model for black-hole binaries with generic mass ratios and spins, Phys. Rev. D, 89, 6, Article 061502 pp. (2014), arXiv:1311.2544
[64] Ossokine, S., Comparing post-Newtonian and numerical-relativity precession dynamics, Phys. Rev. D, 92, 10, Article 104028 pp. (2015), arXiv:1502.01747
[65] Kalaghatgi, C.; Ajith, P.; Arun, K. G., Template-space metric for searches for gravitational waves from the inspiral, merger and ringdown of binary black holes, Phys. Rev. D, 91, 12, Article 124042 pp. (2015), arXiv:1501.04418
[66] Husa, S., Frequency-domain gravitational waves from non-precessing black-hole binaries. I. New numerical waveforms and anatomy of the signal, Phys. Rev. D, 93, 4, Article 044006 pp. (2016), arXiv:1508.07250
[67] Khan, S., Frequency-domain gravitational waves from non-precessing black-hole binaries. II. A phenomenological model for the advanced detector era, Phys. Rev. D, 93, 4, Article 044007 pp. (2016), arXiv:1508.07253
[68] Gupta, A.; Gopakumar, A., Post-Newtonian analysis of a precessing convention for spinning compact binaries, Classical Quantum Gravity, 32, 17, Article 175002 pp. (2015), arXiv:1507.00406 · Zbl 1327.83162
[69] Mishra, C. K.; Kela, A.; Arun, K. G.; Faye, G., Ready-to-use post-Newtonian gravitational waveforms for binary black holes with non-precessing spins: An update
[70] Harry, I.; Privitera, S.; Bohe, A.; Buonanno, A., Searching for gravitational waves from compact binaries with precessing spins
[71] Porto, R. A.; Rothstein, I. Z., The hyperfine Einstein-infeld-Hoffmann potential, Phys. Rev. Lett., 97, Article 021101 pp. (2006), arXiv:gr-qc/0604099
[73] Porto, R. A.; Rothstein, I. Z., Comment on ‘On the next-to-leading order gravitational spin(1)-spin(2) dynamics’ by J. Steinhoff et al.
[74] Porto, R. A.; Rothstein, I. Z., Spin(1)Spin(2) effects in the motion of inspiralling compact binaries at third order in the post-Newtonian expansion, Phys. Rev. D, 78, Article 044012 pp. (2008), arXiv:0802.0720
[75] Porto, R. A.; Rothstein, I. Z., Next to leading order spin(1)spin(1) effects in the motion of inspiralling compact binaries, Phys. Rev. D, 78, Article 044013 pp. (2008), arXiv:0804.0260
[76] Porto, R. A., Next to leading order spin-orbit effects in the motion of inspiralling compact binaries, Classical Quantum Gravity, 27, Article 205001 pp. (2010), arXiv:1005.5730 · Zbl 1202.83019
[77] Porto, R. A.; Ross, A.; Rothstein, I. Z., Spin induced multipole moments for the gravitational wave flux from binary inspirals to third post-Newtonian order, J. Cosmol. Astropart. Phys., 1103, 009 (2011), arXiv:1007.1312
[78] Porto, R. A.; Ross, A.; Rothstein, I. Z., Spin induced multipole moments for the gravitational wave amplitude from binary inspirals to 2.5 post-Newtonian order, J. Cosmol. Astropart. Phys., 1209, 028 (2012), arXiv:1203.2962
[80] Barker, B.; O’Connell, R., Gravitational two-body problem with arbitrary masses, spins, and quadrupole moments, Phys. Rev. D, 12, 329-335 (1975)
[81] Barker, B. M.; O’Connell, R. F., Derivation of the equations of motion of a gyroscope from the quantum theory of gravitation, Phys. Rev. D, 2, 1428-1435 (1970)
[82] Kidder, L. E.; Will, C. M.; Wiseman, A. G., Spin effects in the inspiral of coalescing compact binaries, Phys. Rev. D, 47, 4183-4187 (1993), arXiv:gr-qc/9211025
[83] Kidder, L. E., Coalescing binary systems of compact objects to postNewtonian 5/2 order. 5. Spin effects, Phys. Rev. D, 52, 821-847 (1995), arXiv:gr-qc/9506022
[84] Tagoshi, H.; Ohashi, A.; Owen, B. J., Gravitational field and equations of motion of spinning compact binaries to 2.5 postNewtonian order, Phys. Rev. D, 63, Article 044006 pp. (2001), arXiv:gr-qc/0010014
[85] Faye, G.; Blanchet, L.; Buonanno, A., Higher-order spin effects in the dynamics of compact binaries. I. Equations of motion, Phys. Rev. D, 74, Article 104033 pp. (2006), arXiv:gr-qc/0605139
[86] Blanchet, L.; Buonanno, A.; Faye, G., Higher-order spin effects in the dynamics of compact binaries. II. Radiation field, Phys. Rev. D. Phys. Rev. D, Phys. Rev. D, 81, Article 089901 pp. (2010), (Erratum)
[87] Damour, T.; Jaranowski, P.; Schaefer, G., Hamiltonian of two spinning compact bodies with next-to-leading order gravitational spin-orbit coupling, Phys. Rev. D, 77, Article 064032 pp. (2008), arXiv:0711.1048
[88] Steinhoff, J.; Hergt, S.; Schaefer, G., On the next-to-leading order gravitational spin(1)-spin(2) dynamics, Phys. Rev. D, 77, Article 081501 pp. (2008), arXiv:0712.1716
[89] Steinhoff, J.; Hergt, S.; Schaefer, G., Spin-squared Hamiltonian of next-to-leading order gravitational interaction, Phys. Rev. D, 78, Article 101503 pp. (2008), arXiv:0809.2200
[90] Hergt, S.; Schaefer, G., Higher-order-in-spin interaction Hamiltonians for binary black holes from Poincare invariance, Phys. Rev. D, 78, Article 124004 pp. (2008), arXiv:0809.2208
[91] Hergt, S.; Steinhoff, J.; Schaefer, G., Reduced Hamiltonian for next-to-leading order spin-squared dynamics of general compact binaries, Classical Quantum Gravity, 27, Article 135007 pp. (2010), arXiv:1002.2093 · Zbl 1195.83080
[92] Hergt, S.; Steinhoff, J.; Schaefer, G., On the comparison of results regarding the post-Newtonian approximate treatment of the dynamics of extended spinning compact binaries, J. Phys. Conf. Ser., 484, Article 012018 pp. (2014), arXiv:1205.4530
[93] Steinhoff, J.; Schaefer, G.; Hergt, S., ADM canonical formalism for gravitating spinning objects, Phys. Rev. D, 77, Article 104018 pp. (2008), arXiv:0805.3136
[94] Boheé, A.; Faye, G.; Marsat, S.; Porter, E. K., Quadratic-in-spin effects in the orbital dynamics and gravitational-wave energy flux of compact binaries at the 3pn order, Classical Quantum Gravity, 32, 19, Article 195010 pp. (2015), arXiv:1501.01529 · Zbl 1327.83097
[95] Levi, M., Binary dynamics from spin1-spin2 coupling at fourth post-Newtonian order, Phys. Rev. D, 85, Article 064043 pp. (2012), arXiv:1107.4322
[96] Levi, M.; Steinhoff, J., Next-to-next-to-leading order gravitational spin-orbit coupling via the effective field theory for spinning objects in the post-Newtonian scheme, J. Cosmol. Astropart. Phys., 1601, 011 (2016), arXiv:1506.05056
[97] Levi, M.; Steinhoff, J., Next-to-next-to-leading order gravitational spin-squared potential via the effective field theory for spinning objects in the post-Newtonian scheme, J. Cosmol. Astropart. Phys., 1601, 008 (2016), arXiv:1506.05794
[98] Levi, M.; Steinhoff, J., Equivalence of ADM Hamiltonian and effective field theory approaches at next-to-next-to-leading order spin1-spin2 coupling of binary inspirals, J. Cosmol. Astropart. Phys., 1412, 12, 003 (2014), arXiv:1408.5762
[99] Hartung, J.; Steinhoff, J.; Schaefer, G., Next-to-next-to-leading order post-Newtonian linear-in-spin binary Hamiltonians, Ann. Phys., 525, 359-394 (2013), arXiv:1302.6723 · Zbl 1269.83016
[100] Marsat, S.; Bohe, A.; Faye, G.; Blanchet, L., Next-to-next-to-leading order spin-orbit effects in the equations of motion of compact binary systems, Classical Quantum Gravity, 30, Article 055007 pp. (2013), arXiv:1210.4143 · Zbl 1263.83038
[101] Hartung, J.; Steinhoff, J., Next-to-next-to-leading order post-Newtonian spin(1)-spin(2) Hamiltonian for self-gravitating binaries, Ann. Phys., 523, 919-924 (2011), arXiv:1107.4294 · Zbl 1326.70028
[102] Vaidya, V., Gravitational spin Hamiltonians from the S matrix, Phys. Rev. D, 91, 2, Article 024017 pp. (2015), arXiv:1410.5348
[103] Levi, M.; Steinhoff, J., Leading order finite size effects with spins for inspiralling compact binaries, J. High Energy Phys., 06, 059 (2015), arXiv:1410.2601
[104] Marsat, S., Cubic order spin effects in the dynamics and gravitational wave energy flux of compact object binaries, Classical Quantum Gravity, 32, 8, Article 085008 pp. (2015), arXiv:1411.4118 · Zbl 1328.83103
[105] Gilmore, J. B.; Ross, A., Effective field theory calculation of second post-Newtonian binary dynamics, Phys. Rev. D, 78, Article 124021 pp. (2008), arXiv:0810.1328
[106] Foffa, S.; Sturani, R., Effective field theory calculation of conservative binary dynamics at third post-Newtonian order, Phys. Rev. D, 84, Article 044031 pp. (2011), arXiv:1104.1122
[107] Foffa, S.; Sturani, R., Dynamics of the gravitational two-body problem at fourth post-Newtonian order and at quadratic order in the Newton constant, Phys. Rev. D, 87, 6, Article 064011 pp. (2013), arXiv:1206.7087
[108] Jaranowski, P.; Schaefer, G., Towards the 4th post-Newtonian Hamiltonian for two-point-mass systems, Phys. Rev. D, 86, Article 061503 pp. (2012), arXiv:1207.5448
[109] Jaranowski, P.; Schaefer, G., Dimensional regularization of local singularities in the 4th post-Newtonian two-point-mass Hamiltonian, Phys. Rev. D, 87, Article 081503 pp. (2013), arXiv:1303.3225
[110] Jaranowski, P.; Schaefer, G., Derivation of the local-in-time fourth post-Newtonian ADM Hamiltonian for spinless compact binaries, Phys. Rev. D 92, 12, Article 124043 pp. (2015), arXiv:1508.01016
[111] Damour, T.; Jaranowski, P.; Schaefer, G., Nonlocal-in-time action for the fourth post-Newtonian conservative dynamics of two-body systems, Phys. Rev. D, 89, 6, Article 064058 pp. (2014), arXiv:1401.4548
[112] Bernard, L.; Blanchet, L.; Bohe, A.; Faye, G.; Marsat, S., Fokker action of non-spinning compact binaries at the fourth post-Newtonian approximation
[113] Damour, T.; Jaranowski, P.; Schäfer, G., On the conservative dynamics of two-body systems at the fourth post-Newtonian approximation of general relativity · Zbl 0969.83506
[114] Blanchet, L.; Detweiler, S. L.; Le Tiec, A.; Whiting, B. F., High-Order post-Newtonian fit of the gravitational self-force for circular orbits in the Schwarzschild geometry, Phys. Rev. D, 81, Article 084033 pp. (2010), arXiv:1002.0726
[115] Le Tiec, A., The overlap of numerical relativity, perturbation theory and post-Newtonian theory in the binary black hole problem, Internat. J. Modern Phys. D, 23, 10, 1430022 (2014), arXiv:1408.5505 · Zbl 1310.83020
[116] Goldberger, W. D., Les houches lectures on effective field theories and gravitational radiation, (Les Houches Summer School—Session 86: Particle Physics and Cosmology: The Fabric of Spacetime Les Houches, France, July 31-August 25, 2006 (2007))
[117] Galley, C. R., Effective field theory and gravity, Classical Quantum Gravity (2016), in press
[118] Porto, R. A.; Sturani, R., Scalar gravity: Post-Newtonian corrections via an effective field theory approach, (Les Houches Summer School—Session 86: Particle Physics and Cosmology: The Fabric of Spacetime Les Houches, France, July 31-August 25, 2006 (2007))
[119] Foffa, S.; Sturani, R., Effective field theory methods to model compact binaries, Classical Quantum Gravity, 31, 4, Article 043001 pp. (2014), arXiv:1309.3474 · Zbl 1286.83034
[120] Cardoso, V.; Porto, R. A., Analytic approximations, perturbation theory, effective field theory methods and their applications, Gen. Relativity Gravitation, 46, 1682 (2014), arXiv:1401.2193 · Zbl 1291.83004
[121] Rothstein, I. Z., Progress in effective field theory approach to the binary inspiral problem, Gen. Relativity Gravitation, 46, 1726 (2014) · Zbl 1298.83038
[122] Galley, C. R.; Hu, B. L., Self-force on extreme mass ratio inspirals via curved spacetime effective field theory, Phys. Rev. D, 79, Article 064002 pp. (2009), arXiv:0801.0900
[123] Galley, C. R., A nonlinear scalar model of extreme mass ratio inspirals in effective field theory I. Self force through third order, Classical Quantum Gravity, 29, Article 015010 pp. (2012), arXiv:1012.4488 · Zbl 1242.83015
[124] Galley, C. R., A Nonlinear scalar model of extreme mass ratio inspirals in effective field theory II. Scalar perturbations and a master source, Classical Quantum Gravity, 29, Article 015011 pp. (2012), arXiv:1107.0766 · Zbl 1242.83016
[125] Galley, C. R.; Porto, R. A., Gravitational self-force in the ultra-relativistic limit: the “large-<mml:math xmlns:mml=”http://www.w3.org/1998/Math/MathML“ altimg=”si109.gif“ display=”inline“>N” expansion, J. High Energy Phys., 11, 096 (2013), arXiv:1302.4486
[126] Zimmerman, P., Gravitational self-force in non-vacuum spacetimes: an effective field theory derivation, Phys. Rev. D, 92, 6, Article 064040 pp. (2015), arXiv:1505.03915
[127] Chu, Y.-Z.; Goldberger, W. D.; Rothstein, I. Z., Asymptotics of d-dimensional Kaluza-Klein black holes: beyond the Newtonian approximation, J. High Energy Phys., 03, 013 (2006), arXiv:hep-th/0602016 · Zbl 1226.83050
[128] Gilmore, J. B.; Ross, A.; Smolkin, M., Caged black hole thermodynamics: Charge, the extremal limit, and finite size effects, J. High Energy Phys., 09, 104 (2009), arXiv:0908.3490
[129] Kol, B.; Smolkin, M., Classical effective field theory and caged black holes, Phys. Rev. D, 77, Article 064033 pp. (2008), arXiv:0712.2822
[130] Cardoso, V.; Dias, O. J.C.; Figueras, P., Gravitational radiation in \(d > 4\) from effective field theory, Phys. Rev. D, 78, Article 105010 pp. (2008), arXiv:0807.2261
[131] Birnholtz, O.; Hadar, S., Action for reaction in general dimension, Phys. Rev. D, 89, 4, Article 045003 pp. (2014), arXiv:1311.3196
[132] Birnholtz, O.; Hadar, S., Gravitational radiation-reaction in arbitrary dimension, Phys. Rev. D, 91, 12, Article 124065 pp. (2015), arXiv:1501.06524
[133] Galley, C. R.; Leibovich, A. K.; Rothstein, I. Z., Finite size corrections to the radiation reaction force in classical electrodynamics, Phys. Rev. Lett., 105, Article 094802 pp. (2010), arXiv:1005.2617
[134] Galley, C. R.; Leibovich, A. K.; Rothstein, I. Z., Reply to ‘Comment on’ Finite size corrections to the radiation reaction force in classical electrodynamics, Phys. Rev. Lett., 109, Article 029502 pp. (2012), arXiv:1206.4773
[135] Cannella, U.; Foffa, S.; Maggiore, M.; Sanctuary, H.; Sturani, R., Extracting the three and four-graviton vertices from binary pulsars and coalescing binaries, Phys. Rev. D, 80, Article 124035 pp. (2009), arXiv:0907.2186
[136] ‘, Y.-Z. Chu, ‘The n-body problem in General Relativity up to the second post-Newtonian order from perturbative field theory, Phys. Rev. D, 79, Article 044031 pp. (2009), arXiv:0812.0012
[137] Yolcu, C.; Rothstein, I. Z.; Deserno, M., Effective field theory approach to fluctuation-induced forces between colloids at an interface, Phys. Rev. E, 85, Article 011140 pp. (2012), arXiv:1211.4071
[138] Vaidya, V., Casimir torque on a cylindrical gear, Phys. Rev. A, 90, 2, Article 022105 pp. (2014), arXiv:1304.7475
[139] Haussman, R. C.; Deserno, M., Effective field theory of thermal casimir interactions between anisotropic particles, Phys. Rev. E, 89, 6, Article 062102 pp. (2014)
[140] Endlich, S.; Nicolis, A., The incompressible fluid revisited: vortex-sound interactions
[141] Endlich, S.; Nicolis, A.; Porto, R. A.; Wang, J., Dissipation in the effective field theory for hydrodynamics: First order effects, Phys. Rev. D, 88, Article 105001 pp. (2013), arXiv:1211.6461
[142] Grozdanov, S.; Polonyi, J., Viscosity and dissipative hydrodynamics from effective field theory, Phys. Rev. D, 91, 10, Article 105031 pp. (2015), arXiv:1305.3670
[143] Dubovsky, S.; Hui, L.; Nicolis, A.; Son, D. T., Effective field theory for hydrodynamics: thermodynamics, and the derivative expansion, Phys. Rev. D, 85, Article 085029 pp. (2012), arXiv:1107.0731
[144] Endlich, S.; Nicolis, A.; Rattazzi, R.; Wang, J., The quantum mechanics of perfect fluids, J. High Energy Phys., 04, 102 (2011), arXiv:1011.6396 · Zbl 1250.81116
[145] Nickel, D.; Son, D. T., Deconstructing holographic liquids, New J. Phys., 13, Article 075010 pp. (2011), arXiv:1009.3094 · Zbl 1448.81438
[146] Crossley, M.; Glorioso, P.; Liu, H., Effective field theory of dissipative fluids · Zbl 1382.81199
[147] Lopez Nacir, D.; Porto, R. A.; Senatore, L.; Zaldarriaga, M., Dissipative effects in the effective field theory of inflation, J. High Energy Phys., 01, 075 (2012), arXiv:1109.4192 · Zbl 1306.81425
[148] Lopez Nacir, D.; Porto, R. A.; Zaldarriaga, M., The consistency condition for the three-point function in dissipative single-clock inflation, J. Cosmol. Astropart. Phys., 1209, 004 (2012), arXiv:1206.7083
[149] Cheung, C.; Creminelli, P.; Fitzpatrick, A. L.; Kaplan, J.; Senatore, L., The effective field theory of inflation, J. High Energy Phys., 03, 014 (2008), arXiv:0709.0293
[150] Creminelli, P.; Luty, M. A.; Nicolis, A.; Senatore, L., Starting the universe: stable violation of the null energy condition and non-standard cosmologies, J. High Energy Phys., 12, 080 (2006), arXiv:hep-th/0606090 · Zbl 1226.83089
[151] Baumann, D.; Nicolis, A.; Senatore, L.; Zaldarriaga, M., Cosmological non-linearities as an effective fluid, J. Cosmol. Astropart. Phys., 1207, 051 (2012), arXiv:1004.2488
[152] Carrasco, J. J.M.; Hertzberg, M. P.; Senatore, L., The effective field theory of cosmological large scale structures, J. High Energy Phys., 09, 082 (2012), arXiv:1206.2926 · Zbl 1397.83211
[153] Porto, R. A.; Senatore, L.; Zaldarriaga, M., The Lagrangian-space effective field theory of large scale structures, J. Cosmol. Astropart. Phys., 1405, 022 (2014), arXiv:1311.2168
[154] Coleman, S., Notes from Sidney Coleman’s physics 253a: Quantum field theory
[155] Rothstein, I. Z., TASI lectures on effective field theories
[156] Zee, A., Quantum field theory in a nutshell, 576 (2003), Princeton Univ. Pr.: Princeton Univ. Pr. Princeton, UK · Zbl 1277.81001
[157] Polchinski, J., Effective field theory and the fermi surface, (Theoretical Advanced Study Institute (TASI 92): From Black Holes and Strings to Particles Boulder, Colorado, June 3-28 (1992))
[158] Georgi, H., Effective field theory, Ann. Rev. Nucl. Part. Sci., 43, 209-252 (1993)
[159] Manohar, A. V., Effective field theories, Lecture Notes in Phys., 479, 311-362 (1997), arXiv:hep-ph/9606222
[160] Kaplan, D. B., Five lectures on effective field theory
[161] Jackiw, R.; Templeton, S., How superrenormalizable interactions cure their infrared divergences, Phys. Rev. D, 23, 2291 (1981)
[162] Giddings, S. B.; Porto, R. A., The gravitational S-matrix, Phys. Rev. D, 81, Article 025002 pp. (2010), arXiv:0908.0004
[163] Giddings, S. B., The gravitational S-matrix: Erice lectures, Subnucl. Ser., 48, 93-147 (2013), http://dx.doi.org/10.1142/9789814522489_0005. arXiv:1105.2036
[164] Burgess, C. P., Quantum gravity in everyday life: General relativity as an effective field theory, Living Rev. Rel., 7, 5-56 (2004), arXiv:gr-qc/0311082 · Zbl 1070.83009
[165] Donoghue, J. F.; Holstein, B. R., Low energy theorems of quantum gravity from effective field theory, J. Phys. G, 42, 10, Article 103102 pp. (2015), arXiv:1506.00946
[166] Wheeler, J. A.; Feynman, R. P., Classical electrodynamics in terms of direct interparticle action, Rev. Modern Phys., 21, 425-433 (1949) · Zbl 0034.27801
[167] Thorne, K. S., Multipole expansions of gravitational radiation, Rev. Modern Phys., 52, 299-339 (1980)
[168] Damour, T.; Iyer, B. R., Multipole analysis for electromagnetism and linearized gravity with irreducible cartesian tensors, Phys. Rev. D, 43, 3259-3272 (1991)
[169] Schwinger, J. S., Brownian motion of a quantum oscillator, J. Math. Phys., 2, 407-432 (1961) · Zbl 0098.43503
[170] Keldysh, L. V., Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz.. Zh. Eksp. Teor. Fiz., Sov. Phys.—JETP, 20, 1018-1527 (1965)
[171] Galley, C. R.; Leibovich, A. K., Radiation reaction at 3.5 post-Newtonian order in effective field theory, Phys. Rev. D, 86, Article 044029 pp. (2012), http://dx.doi.org/10.1103/PhysRevD.86.044029. arXiv:1205.3842
[172] Galley, C. R., Classical mechanics of nonconservative systems, Phys. Rev. Lett., 110, 17, Article 174301 pp. (2013), arXiv:1210.2745
[173] Galley, C. R.; Tsang, D.; Stein, L. C., The principle of stationary nonconservative action for classical mechanics and field theories
[174] Blanchet, L.; Damour, T., Tail transported temporal correlations in the dynamics of a gravitating system, Phys. Rev. D, 37, 1410 (1988)
[175] Blanchet, L.; Schaefer, G., Gravitational wave tails and binary star systems, Classical Quantum Gravity, 10, 2699-2721 (1993)
[176] Blanchet, L.; Damour, T., Hereditary effects in gravitational radiation, Phys. Rev. D, 46, 4304-4319 (1992)
[177] Blanchet, L., Time asymmetric structure of gravitational radiation, Phys. Rev. D, 47, 4392-4420 (1993)
[178] Blanchet, L.; Faye, G.; Iyer, B. R.; Sinha, S., The third post-Newtonian gravitational wave polarisations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits, Classical Quantum Gravity. Classical Quantum Gravity, Classical Quantum Gravity, 29, Article 239501 pp. (2012), (Erratum). http://dx.doi.org/10.1088/0264-9381/29/23/239501 · Zbl 1258.83023
[179] Blanchet, L.; Buonanno, A.; Faye, G., Tail-induced spin-orbit effect in the gravitational radiation of compact binaries, Phys. Rev. D, 84, Article 064041 pp. (2011), arXiv:1104.5659
[180] Christodoulou, D., Nonlinear nature of gravitation and gravitational wave experiments, Phys. Rev. Lett., 67, 1486-1489 (1991) · Zbl 0990.83504
[181] Thorne, K., Gravitational-wave bursts with memory: The Christodoulou effect, Phys. Rev. D, 45, 520 (1992)
[182] Favata, M., Post-Newtonian corrections to the gravitational-wave memory for quasi-circular, inspiralling compact binaries, Phys. Rev. D, 80, Article 024002 pp. (2009), arXiv:0812.0069
[183] Grinstein, B.; Rothstein, I. Z., Effective field theory and matching in nonrelativistic gauge theories, Phys. Rev. D, 57, 78-82 (1998), arXiv:hep-ph/9703298
[184] Fock, V., Three lectures on relativity theory, Rev. Modern Phys., 29, 325-333 (1957) · Zbl 0078.43105
[185] Schwarzschild, K., Uber das gravitationsfeld eines massenpunktes nach der Einsteinschen theorie, (Sitzungsber. Preuss. Akad. Wiss. Berlin 1916 (1916)), 189-196 · JFM 46.1296.02
[186] Zee, A., Einstein Gravity in a Nutshell (2013), Princeton University Press: Princeton University Press New Jersey · Zbl 1269.83001
[187] Blanchet, L.; Damour, T., Radiative gravitational fields in general relativity I. general structure of the field outside the source, Phil. Trans. R. Soc. A, 320, 379-430 (1986) · Zbl 0604.35073
[188] Geroch, R. P.; Traschen, J. H., Strings and other distributional sources in general relativity, Phys. Rev. D. Phys. Rev. D, Conf. Proc. C, 861214, 138 (1986)
[189] DeWitt, B. S., Quantum theory of gravity. 2. The manifestly covariant theory, Phys. Rev., 162, 1195-1239 (1967) · Zbl 0161.46501
[190] ’t Hooft, G.; Veltman, M. J.G., One loop divergencies in the theory of gravitation, Annales Poincare Phys. Theor. A, 20, 69-94 (1974) · Zbl 1422.83019
[191] Abbott, L. F., The background field method beyond one loop, Nuclear Phys. B, 185, 189 (1981)
[192] Landau, L. D.; Lifschits, E. M., The Classical Theory of Fields (1975), Pergamon Press
[193] Damour, T.; Jaranowski, P.; Schaefer, G., Dimensional regularization of the gravitational interaction of point masses, Phys. Lett. B, 513, 147-155 (2001), arXiv:gr-qc/0105038 · Zbl 0969.83506
[194] Blanchet, L.; Damour, T.; Esposito-Farese, G.; Iyer, B. R., Dimensional regularization of the third post-Newtonian gravitational wave generation from two point masses, Phys. Rev. D, 71, Article 124004 pp. (2005), arXiv:gr-qc/0503044
[195] Damour, T.; Esposito-Farese, G., Gravitational wave versus binary-pulsar tests of strong field gravity, Phys. Rev. D, 58, Article 042001 pp. (1998), arXiv:gr-qc/9803031
[196] Binnington, T.; Poisson, E., Relativistic theory of tidal love numbers, Phys. Rev. D, 80, Article 084018 pp. (2009), arXiv:0906.1366
[197] Damour, T.; Nagar, A., Relativistic tidal properties of neutron stars, Phys. Rev. D, 80, Article 084035 pp. (2009), arXiv:0906.0096
[198] Hinderer, T., Tidal love numbers of neutron stars, Astrophys. J., 677, 1216-1220 (2008), arXiv:0711.2420
[199] Hinderer, T.; Lackey, B. D.; Lang, R. N.; R. J.S., Tidal deformability of neutron stars with realistic equations of state and their gravitational wave signatures in binary inspiral, Phys. Rev. D, 81, Article 123016 pp. (2010), arXiv:0911.3535
[200] Vines, J.; Flanagan, E. E.; Hinderer, T., Post-1-Newtonian tidal effects in the gravitational waveform from binary inspirals, Phys. Rev. D, 83, Article 084051 pp. (2011), arXiv:1101.1673
[201] Bini, D.; Damour, T.; Faye, G., Effective action approach to higher-order relativistic tidal interactions in binary systems and their effective one body description, Phys. Rev. D, 85, Article 124034 pp. (2012), arXiv:1202.3565
[202] Yagi, K.; Yunes, N., I-Love-Q relations in neutron stars and their applications to astrophysics, gravitational waves and fundamental physics, Phys. Rev. D, 88, 2, Article 023009 pp. (2013), arXiv:1303.1528
[203] Doneva, D. D.; Yazadjiev, S. S.; Stergioulas, N.; Kokkotas, K. D., Breakdown of i-love-q universality in rapidly rotating relativistic stars, Astrophys. J., 781, L6 (2013), arXiv:1310.7436
[204] Chakrabarti, S.; Delsate, T.; Steinhoff, J., New perspectives on neutron star and black hole spectroscopy and dynamic tides
[205] Chakrabarti, S.; Delsate, T.; Steinhoff, J., Effective action and linear response of compact objects in Newtonian gravity, Phys. Rev. D, 88, Article 084038 pp. (2013), arXiv:1306.5820
[206] Bernuzzi, S.; Nagar, A.; Dietrich, T.; Damour, T., Modeling the dynamics of tidally interacting binary neutron stars up to the merger, Phys. Rev. Lett., 114, 16, Article 161103 pp. (2015), arXiv:1412.4553
[207] Agathos, M.; Meidam, J.; Del Pozzo, W.; Li, T. G.F.; Tompitak, M.; Veitch, J.; Vitale, S.; Broeck, C. V.D., Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars, Phys. Rev. D, 92, 2, Article 023012 pp. (2015), arXiv:1503.05405
[208] Chatziioannou, K.; Yagi, K.; Klein, A.; Cornish, N.; Yunes, N., Probing the internal composition of neutron stars with gravitational waves
[209] Bini, D.; Geralico, A., Tidal invariants along the worldline of an extended body in kerr spacetime, Phys. Rev. D, 91, 8, Article 084012 pp. (2015)
[210] Appelquist, T.; Carazzone, J., Infrared singularities and massive fields, Phys. Rev. D, 11, 2856 (1975)
[211] Maldacena, J. M., The large N limit of superconformal field theories and supergravity, Internat. J. Theoret. Phys.. Internat. J. Theoret. Phys., Adv. Theor. Math. Phys., 2,231, 1113-1133 (1998), arXiv:hep-th/9711200 · Zbl 0969.81047
[212] Witten, E., Anti-de sitter space and holography, Adv. Theor. Math. Phys., 2, 253-291 (1998) · Zbl 0914.53048
[213] Gubser, S. S.; Klebanov, I. R.; Polyakov, A. M., Gauge theory correlators from noncritical string theory, Phys. Lett. B, 428, 105-114 (1998), arXiv:hep-th/9802109 · Zbl 1355.81126
[214] Einstein, A.; Infeld, L.; Hoffmann, B., The gravitational equations and the problem of motion, Ann. Math., 39, 65-100 (1938) · Zbl 0018.28103
[215] Kol, B.; Smolkin, M., Non-Relativistic gravitation: from Newton to Einstein and back, Classical Quantum Gravity, 25, Article 145011 pp. (2008), arXiv:0712.4116 · Zbl 1180.83019
[216] Blanchet, L.; Damour, T., Post-Newtonian generation of gravitational waves, Annales Poincare Phys. Theor., 50, 377-408 (1989) · Zbl 0684.53059
[217] Arnowitt, R. L.; Deser, S.; Misner, C. W., The dynamics of general relativity, Gen. Relativity Gravitation, 40, 1997-2027 (2008), arXiv:gr-qc/0405109 · Zbl 1152.83320
[218] Damour, T., The problem of motion in Newtonian and Einsteinian gravity, (Hawking, S. W.; Israel, W., Three Hundred Years of Gravitation (1987), Cambridge University Press), 128-198 · Zbl 0966.83509
[219] Kol, B.; Smolkin, M., Black hole stereotyping: Induced gravito-static polarization, J. High Energy Phys., 02, 010 (2012), arXiv:1110.3764 · Zbl 1309.83069
[220] Maggiore, M., (Gravitational Waves. Vol. 1: Theory and Experiments. Gravitational Waves. Vol. 1: Theory and Experiments, Oxford Master Series in Physics (2007), Oxford University Press)
[221] Damour, T., Gravitational self force in a schwarzschild background and the effective one body formalism, Phys. Rev. D, 81, Article 024017 pp. (2010), arXiv:0910.5533
[222] Muzinich, I. J.; Soldate, M., High-Energy unitarity of gravitation and strings, Phys. Rev. D, 37, 359 (1988)
[223] Asada, H.; Futamase, T., Propagation of gravitational waves from slow motion sources in Coulomb type potential, Phys. Rev. D, 56, 6062-6066 (1997), arXiv:gr-qc/9711009
[224] Khriplovich, I. B.; Pomeransky, A. A., Tail of gravitational radiation and coulomb final state interaction, Phys. Lett. A, 252, 17-19 (1999), arXiv:gr-qc/9712040
[225] Blanchet, L.; Sathyaprakash, B. S., Detecting the tail effect in gravitational wave experiments, Phys. Rev. Lett., 74, 1067-1070 (1995)
[226] Anderson, J. L.; Kegeles, L. S.; Madonna, R. G.; Kates, R. E., Divergent integrals of post-Newtonian gravity: Non-analytic terms in the near zone expansion of a gravitationally radiating system found by matching, Phys. Rev. D, 25, 2038-2048 (1982)
[227] Blanchet, L., Gravitational wave tails of tails, Classical Quantum Gravity. Classical Quantum Gravity, Classical Quantum Gravity, 22, 3381-141 (2005), arXiv:gr-qc/9710038 · Zbl 1075.83510
[228] Fujita, R., Gravitational waves from a particle in circular orbits around a schwarzschild black hole to the 22nd post-Newtonian order, Progr. Theoret. Phys., 128, 971-992 (2012), arXiv:1211.5535
[229] Blanchet, L., Gravitational radiation reaction and balance equations to post-Newtonian order, Phys. Rev. D, 55, 714-732 (1997), arXiv:gr-qc/9609049
[230] Thorne, K. S., Nonradial pulsation of general-relativistic stellar models IV. The weakfield limit, Astrophys. J., 158, 997 (1969)
[231] Burke, W. L., Gravitational radiation damping of slowly moving systems calculated using matched asymptotic expansions, J. Math. Phys., 12, 401-418 (1971)
[232] Appelquist, T.; Dine, M.; Muzinich, I. J., The static potential in quantum chromodynamics, Phys. Lett. B, 69, 231 (1977)
[233] Brambilla, N.; Pineda, A.; Soto, J.; Vairo, A., The infrared behavior of the static potential in perturbative QCD, Phys. Rev. D, 60, Article 091502 pp. (1999), arXiv:hep-ph/9903355
[234] Brambilla, N.; Pineda, A.; Soto, J.; Vairo, A., Potential NRQCD: An effective theory for heavy quarkonium, Nuclear Phys. B, 566, 275 (2000), arXiv:hep-ph/9907240
[235] Hoang, A. H.; Manohar, A. V.; Stewart, I. W., The running Coulomb potential and Lamb shift in QCD, Phys. Rev. D, 64, Article 014033 pp. (2001), arXiv:hep-ph/0102257
[236] Bini, D.; Damour, T., Analytical determination of the two-body gravitational interaction potential at the fourth post-Newtonian approximation, Phys. Rev., D87, 12, Article 121501 pp. (2013), arXiv:1305.4884
[237] Manohar, A. V.; Stewart, I. W., The zero-bin and mode factorization in quantum field theory, Phys. Rev. D, 76, Article 074002 pp. (2007), arXiv:hep-ph/0605001
[239] Page, D. N., Particle emission rates from a black hole: massless particles from an uncharged, nonrotating hole, Phys. Rev. D, 13, 198-206 (1976)
[240] Poisson, E.; Sasaki, M., Gravitational radiation from a particle in circular orbit around a black hole. 5: Black hole absorption and tail corrections, Phys. Rev. D, 51, 5753-5767 (1995), arXiv:gr-qc/9412027
[241] Tagoshi, H.; Mano, S.; Takasugi, E., PostNewtonian expansion of gravitational waves from a particle in circular orbits around a rotating black hole: Effects of black hole absorption, Progr. Theoret. Phys., 98, 829-850 (1997), arXiv:gr-qc/9711072
[242] Delacrétaz, L. V.; Endlich, S.; Monin, A.; Penco, R.; Riva, F., (Re-)inventing the relativistic wheel: Gravity, cosets, and spinning objects, J. High Energy Phys., 11, 008 (2014), arXiv:1405.7384 · Zbl 1333.81288
[243] Endlich, S.; Penco, R., An effective field theory approach to tidal dynamics of astrophysical systems, Phys. Rev. D, 93, 6, Article 064021 pp. (2016), arXiv:1510.08889
[244] Coleman, S. R.; Wess, J.; Zumino, B., Structure of phenomenological Lagrangians. 1, Phys. Rev., 177, 2239-2247 (1969)
[245] Callan, C. G.; Coleman, S. R.; Wess, J.; Zumino, B., Structure of phenomenological Lagrangians. 2, Phys. Rev., 177, 2247-2250 (1969)
[246] Mathisson, M., Neue mechanik materieller systemes, Acta Phys. Polon., 6, 163-2900 (1937) · JFM 63.1262.01
[247] Papapetrou, A., Spinning test particles in general relativity. 1, Proc. Roy. Soc. Lond. A, 209, 248-258 (1951) · Zbl 0044.22801
[248] Tulczyjew, W. M., Motion of multipole particles in general relativity theory, Acta Phys. Polon., 18, 393 (1959) · Zbl 0097.42402
[249] Dixon, W. G., Dynamics of extended bodies in general relativity. I. Momentum and angular momentum, Proc. Roy. Soc. Lond. A, 314, 499-527 (1970)
[250] Hanson, A. J.; Regge, T., The relativistic spherical top, Ann. Physics, 87, 498 (1974)
[251] Bailey, I.; Israel, W., Lagrangian dynamics of spinning particles and polarized media in general relativity, Comm. Math. Phys., 42, 65-82 (1975)
[252] Henneaux, M.; Teitelboim, C., Quantization of gauge systems, 520 (1992), Princeton Univ. Pr. · Zbl 0838.53053
[253] Hergt, S.; Steinhoff, J.; Schaefer, G., Elimination of the spin supplementary condition in the effective field theory approach to the post-Newtonian approximation, Ann. Physics, 327, 1494-1537 (2012), arXiv:1110.2094 · Zbl 1246.83058
[254] Yee, K.; Bander, M., Equations of motion for spinning particles in external electromagnetic and gravitational fields, Phys. Rev. D, 48, 2797-2799 (1993), arXiv:hep-th/9302117
[255] Laarakkers, W. G.; Poisson, E., Quadrupole moments of rotating neutron stars, Astrophys. J., 512, 282-287 (1999), arXiv:gr-qc/9709033
[256] Buonanno, A.; Faye, G.; Hinderer, T., Spin effects on gravitational waves from inspiraling compact binaries at second post-Newtonian order, Phys. Rev. D, 87, 4, Article 044009 pp. (2013), arXiv:1209.6349
[257] Bini, D.; Geralico, A., Extended bodies in a Kerr spacetime: exploring the role of a general quadrupole tensor, Classical Quantum Gravity, 31, Article 075024 pp. (2014), arXiv:1408.5484 · Zbl 1291.83130
[258] Bini, D.; Faye, G.; Geralico, A., Dynamics of extended bodies in a Kerr spacetime with spin-induced quadrupole tensor, Phys. Rev. D, 92, 10, Article 104003 pp. (2015), arXiv:1507.07441
[259] Bini, D.; Geralico, A., Effect of an arbitrary spin orientation on the quadrupolar structure of an extended body in a schwarzschild spacetime, Phys. Rev. D, 91, Article 104036 pp. (2015), arXiv:1412.7643
[260] Poisson, E., Tidal deformation of a slowly rotating black hole, Phys. Rev. D, 91, 4, Article 044004 pp. (2015), arXiv:1411.4711
[261] Pani, P.; Gualtieri, L.; Ferrari, V., Tidal love numbers of a slowly-spinning neutron star, Phys. Rev. D, 92, 12, Article 124003 pp. (2015), arXiv:1509.02171
[262] Pani, P.; Gualtieri, L.; Maselli, A.; Ferrari, V., Tidal deformations of a spinning compact object, Phys. Rev. D, 92, 2, Article 024010 pp. (2015), arXiv:1503.07365
[263] Landry, P.; Poisson, E., Dynamical response to a stationary tidal field, Phys. Rev. D, 92, 12, Article 124041 pp. (2015), arXiv:1510.09170
[264] Pannarale, F.; Berti, E.; Kyutoku, K.; Lackey, B. D.; Shibata, M., Aligned spin neutron star-black hole mergers: a gravitational waveform amplitude model, Phys. Rev. D, 92, 8, Article 084050 pp. (2015), arXiv:1509.00512
[265] Barausse, E.; Racine, E.; Buonanno, A., Hamiltonian of a spinning test-particle in curved spacetime, Phys. Rev. D. Phys. Rev. D, Phys. Rev. D, 85, Article 069904 pp. (2012), (Erratum) arXiv:0907.4745
[266] Vines, J.; Kunst, D.; Steinhoff, J.; Hinderer, T., Canonical Hamiltonian for an extended test body in curved spacetime: To quadratic order in spin
[267] Zel’dovich, Y. B., Generation of waves by a rotating body, Zh. Eksp. Teor. Fiz., 14, 270 (1971)
[268] Misner, C. W., Interpretation of gravitational-wave observations, Phys. Rev. Lett., 28, 994-997 (1972)
[269] Starobinski, A. A.; Churilov, S. M., Amplification of electromagnetic and gravitational waves scattered by a rotating black hole, Zh. Eksp. Teor. Fiz., 65, 3 (1973)
[270] Unruh, W. G., Second quantization in the Kerr metric, Phys. Rev. D, 10, 3194-3205 (1974)
[271] Bekenstein, J. D.; Schiffer, M., The many faces of superradiance, Phys. Rev. D, 58, Article 064014 pp. (1998), arXiv:gr-qc/9803033
[272] Brito, R.; Cardoso, V.; Pani, P., Superradiance, Lecture Notes in Phys., 906, 1-237 (2015), arXiv:1501.06570
[273] Matzner, R. A.; Ryan, M. P., Low frequency limit of gravitational scattering, Phys. Rev. D, 16, 1636-1642 (1977)
[274] Handler, F. A.; Matzner, R. A., Gravitational wave scattering, Phys. Rev. D, 22, 2331-2348 (1980)
[275] Poisson, E., Absorption of mass and angular momentum by a black hole: Time-domain formalisms for gravitational perturbations, and the small-hole/slow-motion approximation, Phys. Rev. D, 70, Article 084044 pp. (2004), arXiv:gr-qc/0407050
[276] Andersson, N.; Kokkotas, K. D., The R mode instability in rotating neutron stars, Internat. J. Modern Phys. D, 10, 381-442 (2001), arXiv:gr-qc/0010102
[277] Chakrabarty, D., Nuclear-powered millisecond pulsars and the maximum spin frequency of neutron stars, Nature, 424, 42-44 (2003), arXiv:astro-ph/0307029
[278] Lorimer, D. R., Binary and millisecond pulsars, Living Rev. Rel., 11, 8 (2008) · Zbl 1166.85301
[280] Levi, M., Next to leading order gravitational spin1-spin2 coupling with Kaluza-Klein reduction, Phys. Rev. D, 82, Article 064029 pp. (2010), arXiv:0802.1508
[281] Levi, M., Next to leading order gravitational spin-orbit coupling in an effective field theory approach, Phys. Rev. D, 82, Article 104004 pp. (2010), arXiv:1006.4139
[282] Levi, M.; Steinhoff, J., Spinning gravitating objects in the effective field theory in the post-Newtonian scheme, J. High Energy Phys., 09, 219 (2015), arXiv:1501.04956 · Zbl 1388.83031
[283] Iyer, B. R.; Will, C. M., PostNewtonian gravitational radiation reaction for two-body systems, Phys. Rev. Lett., 70, 113-116 (1993)
[284] Iyer, B. R.; Will, C. M., PostNewtonian gravitational radiation reaction for two-body systems: Nonspinning bodies, Phys. Rev. D, 52, 6882-6893 (1995)
[285] Nissanke, S.; Blanchet, L., Gravitational radiation reaction in the equations of motion of compact binaries to 3.5 post-Newtonian order, Classical Quantum Gravity, 22, 1007-1032 (2005), arXiv:gr-qc/0412018 · Zbl 1073.83021
[286] Foffa, S.; Sturani, R., Tail terms in gravitational radiation reaction via effective field theory, Phys. Rev. D, 87, 4, Article 044056 pp. (2013), arXiv:1111.5488
[287] Neill, D.; Rothstein, I. Z., Classical space-times from the s matrix, Nuclear Phys. B, 877, 177-189 (2013), arXiv:1304.7263 · Zbl 1284.83052
[288] Britto, R.; Cachazo, F.; Feng, B., New recursion relations for tree amplitudes of gluons, Nuclear Phys. B, 715, 499-522 (2005), arXiv:hep-th/0412308 · Zbl 1207.81088
[289] Britto, R.; Cachazo, F.; Feng, B.; Witten, E., Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett., 94, Article 181602 pp. (2005), arXiv:hep-th/0501052
[290] Bern, Z.; Carrasco, J. J.M.; Johansson, H., New relations for gauge-theory amplitudes, Phys. Rev. D, 78, Article 085011 pp. (2008), arXiv:0805.3993
[291] Bern, Z.; Dennen, T.; Huang, Y.-t.; Kiermaier, M., Gravity as the square of gauge theory, Phys. Rev. D, 82, Article 065003 pp. (2010), arXiv:1004.0693
[292] Bern, Z.; Carrasco, J. J.M.; Johansson, H., Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett., 105, Article 061602 pp. (2010), arXiv:1004.0476
[293] Bern, Z.; Dixon, L. J.; Kosower, D. A., On-Shell methods in perturbative QCD, Ann. Physics, 322, 1587-1634 (2007), arXiv:0704.2798 · Zbl 1122.81077
[294] Bern, Z.; Dixon, L. J.; Dunbar, D. C.; Kosower, D. A., Fusing gauge theory tree amplitudes into loop amplitudes, Nuclear Phys. B, 435, 59-101 (1995), arXiv:hep-ph/9409265
[295] Benincasa, P.; Cachazo, F., Consistency conditions on the S-matrix of massless particles
[296] Bern, Z.; Davies, S.; Nohle, J., Double-Copy constructions and unitarity cuts
[297] Carrasco, J. J.M., Gauge and gravity amplitude relations · Zbl 1334.81066
[298] Riess, A. G., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J., 116, 1009-1038 (1998)
[299] Perlmutter, S., Measurements of Omega and Lambda from 42 high redshift supernovae, Astrophys. J., 517, 565-586 (1999), arXiv:astro-ph/9812133 · Zbl 1368.85002
[300] Amendola, L., Cosmology and fundamental physics with the Euclid satellite, Living Rev. Rel., 16, 6 (2013), arXiv:1206.1225
[301] Abell, P. A., LSST Science Book, Version 2.0
[302] Peebles, P. J.E.; Ratra, B., The cosmological constant and dark energy, Rev. Modern Phys., 75, 559-606 (2003), arXiv:astro-ph/0207347 · Zbl 1205.83082
[303] Joyce, A.; Jain, B.; Khoury, J.; Trodden, M., Beyond the cosmological standard model, Phys. Rep., 568, 1-98 (2015), arXiv:1407.0059
[304] Alam, S., The eleventh and twelfth data releases of the sloan digital sky survey: Final data from SDSS-III, Astrophys. J. Suppl., 219, 1, 12 (2015), arXiv:1501.00963
[305] Reid, B., SDSS-III baryon oscillation spectroscopic survey data release 12: galaxy target selection and large scale structure catalogues, Mon. Not. R. Astron. Soc., 455, 2, 1553-1573 (2016), arXiv:1509.06529
[306] Cuesta, A. J., The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the correlation function of LOWZ and CMASS galaxies in Data Release 12, Mon. Not. R. Astron. Soc., 457, 1770 (2016), arXiv:1509.06371
[307] Ade, P. A.R., Planck 2015 results. xx. constraints on inflation
[308] Ade, P. A.R., Planck 2015 results. XVII. Constraints on primordial non-Gaussianity
[309] Ade, P. A.R., Planck 2015 results. XIII. Cosmological parameters
[310] Ade, P. A.R., Improved constraints on cosmology and foregrounds from BICEP2 and keck array cosmic microwave background data with iclusion of 95 GHz Band, Phys. Rev. Lett., 116, Article 031302 pp. (2016), arXiv:1510.09217
[311] Dore, O., Cosmology with the SPHEREX All-Sky spectral survey
[312] Alvarez, M., Testing inflation with large scale structure: connecting hopes with reality
[313] Baumann, D.; Green, D.; Porto, R. A., B-modes and the nature of inflation, J. Cosmol. Astropart. Phys., 1501, 01, 016 (2015), arXiv:1407.2621
[314] Baumann, D.; Green, D., Signatures of supersymmetry from the early universe, Phys. Rev. D, 85, Article 103520 pp. (2012), arXiv:1109.0292
[315] Flauger, R.; Green, D.; Porto, R. A., On squeezed limits in single-field inflation. Part I, J. Cosmol. Astropart. Phys., 1308, 032 (2013), arXiv:1303.1430
[316] Porto, R. A., Gravitational waves and the (quantum) nature of the primordial seed, Internat. J. Modern Phys. D, 23, 12, 1441005 (2014) · Zbl 1305.83010
[317] Baumann, D.; Green, D.; Lee, H.; Porto, R. A., Signs of analyticity in single-field inflation, Phys. Rev. D, 93, 2, Article 023523 pp. (2016), arXiv:1502.07304
[318] Arkani-Hamed, N.; Maldacena, J., Cosmological collider physics
[319] Mirbabayi, M.; Smonovic, M., Effective theory of squeezed correlation functions
[320] Mukhanov, V., Physical Foundations of Cosmology (2005), Cambridge University Press: Cambridge University Press Oxford · Zbl 1095.83002
[321] Baumann, D.; McAllister, L., Inflation and String Theory (2015), Cambridge University Press, arXiv:1404.2601 · Zbl 1339.83003
[322] Baldauf, T.; Mirbabayi, M.; Simonovic, M.; Zaldarriaga, M., LSS constraints with controlled theoretical uncertainties
[323] Springel, V.; Frenk, C. S.; White, S. D.M., The large-scale structure of the universe, Nature, 440, 1137-1144 (2006)
[324] Heitmann, K., The coyote universe i: precision determination of the nonlinear matter power spectrum, Astrophys. J., 715, 104-121 (2010), arXiv:0812.1052
[325] Heitmann, K., The coyote universe extended: precision emulation of the matter power spectrum, Astrophys. J., 780, 111 (2014), arXiv:1304.7849
[326] Tassev, S.; Zaldarriaga, M.; Eisenstein, D., Solving large scale structure in ten easy steps with cola, J. Cosmol. Astropart. Phys., 1306, 036 (2013), arXiv:1301.0322
[327] Tassev, S.; Eisenstein, D. J.; Wandelt, B. D.; Zaldarriaga, M., sCOLA: The N-body COLA Method Extended to the Spatial Domain
[328] Skillman, S. W., Dark sky simulations: early data release
[329] Schneider, A., Matter power spectrum and the challenge of percent accuracy
[330] Eisenstein, D. J.; Seo, H.-j.; Sirko, E.; Spergel, D., Improving cosmological distance measurements by reconstruction of the baryon acoustic peak, Astrophys. J., 664, 675-679 (2007), arXiv:astro-ph/0604362
[331] Tassev, S.; Zaldarriaga, M., Towards an optimal reconstruction of baryon oscillations, J. Cosmol. Astropart. Phys., 1210, 006 (2012), arXiv:1203.6066
[332] White, M., Reconstruction within the Zeldovich approximation, Mon. Not. R. Astron. Soc., 450, 4, 3822-3828 (2015), arXiv:1504.03677
[333] Vargas-Magaa, M.; Ho, S.; Fromenteau, S.; Cuesta, A. J., The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: Effect of smoothing of density field on reconstruction and anisotropic BAO analysis
[334] Zeldovich, Y. B., Gravitational instability: An approximate theory for large density perturbations, Astron. Atrophys., 5, 84-89 (1970)
[335] Bernardeau, F.; Van de Rijt, N.; Vernizzi, F., Resummed propagators in multi-component cosmic fluids with the eikonal approximation, Phys. Rev. D, 85, Article 063509 pp. (2012), arXiv:1109.3400
[336] Baldauf, T.; Seljak, U.; Senatore, L.; Zaldarriaga, M., Galaxy bias and non-linear structure formation in general relativity, J. Cosmol. Astropart. Phys., 1110, 031 (2011), arXiv:1106.5507
[337] Sherwin, B. D.; Zaldarriaga, M., The shift of the baryon acoustic oscillation scale: A simple physical picture, Phys. Rev. D, 85, Article 103523 pp. (2012), arXiv:1202.3998
[338] Kehagias, A.; Riotto, A., Symmetries and consistency relations in the large scale structure of the universe, Nucl. Phys. B, 873, 514-529 (2013), arXiv:1302.0130 · Zbl 1282.85004
[339] Peloso, M.; Pietroni, M., Galilean invariance and the consistency relation for the nonlinear squeezed bispectrum of large scale structure, J. Cosmol. Astropart. Phys., 1305, 031 (2013), arXiv:1302.0223
[340] Creminelli, P.; Norea, J.; Simonovic, M.; Vernizzi, F., Single-field consistency relations of large scale structure, J. Cosmol. Astropart. Phys., 1312, 025 (2013), arXiv:1309.3557
[341] Creminelli, P.; Gleyzes, J.; Simonovic, M.; Vernizzi, F., Single-field consistency relations of large scale structure. Part II: Resummation and redshift space, J. Cosmol. Astropart. Phys., 1402, 051 (2014), arXiv:1311.0290
[342] Creminelli, P.; Gleyzes, J.; Hui, L.; Simonovic, M.; Vernizzi, F., Single-field consistency relations of large scale structure. Part III: Test of the equivalence principle, J. Cosmol. Astropart. Phys., 1406, 009 (2014), arXiv:1312.6074
[343] Schmidt, F.; Pajer, E.; Zaldarriaga, M., Large-scale structure and gravitational waves III: Tidal effects, Phys. Rev. D, 89, 8, Article 083507 pp. (2014), arXiv:1312.5616
[344] Valageas, P., Angular averaged consistency relations of large-scale structures, Phys. Rev. D, 89, 12, Article 123522 pp. (2014), arXiv:1311.4286
[345] Kehagias, A.; Perrier, H.; Riotto, A., Equal-time consistency relations in the large-scale structure of the universe, Modern Phys. Lett. A, 29, 1450152 (2014), arXiv:1311.5524 · Zbl 1297.83052
[346] Senatore, L.; Zaldarriaga, M., The IR-resummed effective field theory of large scale structures, J. Cosmol. Astropart. Phys., 1502, 02, 013 (2015), arXiv:1404.5954
[347] Ben-Dayan, I.; Konstandin, T.; Porto, R. A.; Sagunski, L., On soft limits of large-scale structure correlation functions, J. Cosmol. Astropart. Phys., 1502, 02, 026 (2015), arXiv:1411.3225
[348] Mirbabayi, M.; Simonovic, M.; Zaldarriaga, M., Baryon acoustic peak and the squeezed limit bispectrum
[349] Baldauf, T.; Mirbabayi, M.; Simonovic, M.; Zaldarriaga, M., Equivalence principle and the baryon acoustic peak, Phys. Rev. D, 92, 4, Article 043514 pp. (2015), arXiv:1504.04366
[350] Baldauf, T.; Seljak, U.; Senatore, L.; Zaldarriaga, M., Linear response to long wavelength fluctuations using curvature simulations
[351] Hertzberg, M. P., Effective field theory of dark matter and structure formation: Semianalytical results, Phys. Rev. D, 89, 4, Article 043521 pp. (2014), arXiv:1208.0839
[352] Pajer, E.; Zaldarriaga, M., On the renormalization of the effective field theory of large scale structures, J. Cosmol. Astropart. Phys., 1308, 037 (2013), arXiv:1301.7182
[353] Mercolli, L.; Pajer, E., On the velocity in the effective field theory of large scale structures, J. Cosmol. Astropart. Phys., 1403, 006 (2014), arXiv:1307.3220
[354] Carrasco, J. J.M.; Foreman, S.; Green, D.; Senatore, L., the 2-loop matter power spectrum and the ir-safe integrand, J. Cosmol. Astropart. Phys., 1407, 056 (2014), arXiv:1304.4946
[355] Carrasco, J. J.M.; Foreman, S.; Green, D.; Senatore, L., The effective field theory of large scale structures at two loops, J. Cosmol. Astropart. Phys., 1407, 057 (2014), arXiv:1310.0464
[356] Carroll, S. M.; Leichenauer, S.; Pollack, J., Consistent effective theory of long-wavelength cosmological perturbations, Phys. Rev. D, 90, 2, Article 023518 pp. (2014), arXiv:1310.2920
[357] Assassi, V.; Baumann, D.; Green, D.; Zaldarriaga, M., Renormalized halo bias, J. Cosmol. Astropart. Phys., 1408, 056 (2014), arXiv:1402.5916
[358] Angulo, R. E.; Foreman, S.; Schmittfull, M.; Senatore, L., The one-loop matter bispectrum in the effective field theory of large scale structures, J. Cosmol. Astropart. Phys., 1510, 10, 039 (2015), arXiv:1406.4143
[359] Baldauf, T.; Mercolli, L.; Mirbabayi, M.; Pajer, E., The bispectrum in the effective field theory of large scale structure, J. Cosmol. Astropart. Phys., 1505, 05, 007 (2015), arXiv:1406.4135
[360] Senatore, L., Bias in the effective field theory of large scale structures, J. Cosmol. Astropart. Phys., 1511, 11, 007 (2015), arXiv:1406.7843
[361] Senatore, L.; Zaldarriaga, M., Redshift space distortions in the effective field theory of large scale structures
[362] Lewandowski, M.; Perko, A.; Senatore, L., Analytic prediction of baryonic effects from the eft of large scale structures, J. Cosmol. Astropart. Phys., 1505, 05, 019 (2015), arXiv:1412.5049
[363] Mirbabayi, M.; Schmidt, F.; Zaldarriaga, M., Biased tracers and time evolution, J. Cosmol. Astropart. Phys., 1507, 07, 030 (2015), arXiv:1412.5169
[364] McQuinn, M.; White, M., Cosmological perturbation theory in 1+1 dimensions, J. Cosmol. Astropart. Phys., 1601, 01, 043 (2016), arXiv:1502.07389
[365] Angulo, R.; Fasiello, M.; Senatore, L.; Vlah, Z., On the statistics of biased tracers in the effective field theory of large scale structures, J. Cosmol. Astropart. Phys., 1509, 09, 029 (2015), arXiv:1503.08826
[366] Foreman, S.; Senatore, L., The EFT of large scale structures at all redshifts: Analytical predictions for lensing
[367] Assassi, V.; Baumann, D.; Pajer, E.; Welling, Y.; van der Woude, D., Effective theory of large-scale structure with primordial non-gaussianity, J. Cosmol. Astropart. Phys., 1511, 11, 024 (2015), arXiv:1505.06668
[368] Baldauf, T.; Schaan, E.; Zaldarriaga, M., On the reach of perturbative descriptions for dark matter displacement fields, J. Cosmol. Astropart. Phys., 1603, 03, 017 (2016), arXiv:1505.07098
[369] Vlah, Z.; White, M.; Aviles, A., A Lagrangian effective field theory, J. Cosmol. Astropart. Phys., 1509, 09, 014 (2015), arXiv:1506.05264
[370] Baldauf, T.; Schaan, E.; Zaldarriaga, M., On the reach of perturbative methods for dark matter density fields, J. Cosmol. Astropart. Phys., 1603, 03, 007 (2016), arXiv:1507.02255
[371] Baldauf, T.; Mercolli, L.; Zaldarriaga, M., The effective field theory of large scale structure at two loops: the apparent scale dependence of the speed of sound, Phys. Rev. D, 92, 12, Article 123007 pp. (2015), arXiv:1507.02256
[372] Foreman, S.; Perrier, H.; Senatore, L., Precision comparison of the power spectrum in the EFTofLSS with simulations
[373] Garny, M.; Konstandin, T.; Porto, R. A.; Sagunski, L., On the soft limit of the large scale structure power spectrum: UV dependence, J. Cosmol. Astropart. Phys., 1511, 11, 032 (2015), arXiv:1508.06306
[374] Vlah, Z.; Seljak, U.; Chu, M. Y.; Feng, Y., Perturbation theory, effective field theory, and oscillations in the power spectrum
[375] Abolhasani, A. A.; Mirbabayi, M.; Pajer, E., Systematic renormalization of the effective theory of large scale structure
[376] Assassi, V.; Baumann, D.; Schmidt, F., Galaxy bias and primordial non-gaussianity
[377] Zaldarriaga, M.; Mirbabayi, M., Lagrangian formulation of the Eulerian-EFT
[378] Lewandowski, M.; Senatore, L.; Prada, F.; Zhao, C.; Chuang, C.-H., On the EFTofLSS in redshift-space
[379] Bertolini, D.; Schutz, K.; Solon, M. P.; Walsh, J. R.; Zurek, K. M., Non-Gaussian covariance of the matter power spectrum in the effective field theory of large scale structure
[380] Peebles, P. J.E., The Large-scale Structure of the Universe (1980), Princeton University Press · Zbl 0117.44401
[381] Bernardeau, F.; Colombi, S.; Gaztanaga, E.; Scoccimarro, R., Large scale structure of the universe and cosmological perturbation theory, Phys. Rep., 367, 1-248 (2002), arXiv:astro-ph/0112551 · Zbl 0996.85005
[382] Blas, D.; Garny, M.; Konstandin, T., Cosmological perturbation theory at three-loop order, J. Cosmol. Astropart. Phys., 1401, 01, 010 (2014), arXiv:1309.3308
[383] Scoccimarro, R.; Frieman, J., Loop corrections in nonlinear cosmological perturbation theory 2. two point statistics and selfsimilarity, Astrophys. J., 473, 620 (1996), arXiv:astro-ph/9602070
[384] Tassev, S., Lagrangian or Eulerian; real or Fourier? Not all approaches to large-scale structure are created equal, J. Cosmol. Astropart. Phys., 1406, 008 (2014), arXiv:1311.4884
[385] Vlah, Z.; Seljak, U.; Baldauf, T., Lagrangian perturbation theory at one loop order: successes, failures, and improvements, Phys. Rev. D, 91, Article 023508 pp. (2015), arXiv:1410.1617
[386] Tassev, S.; Zaldarriaga, M., The mildly non-linear regime of structure formation, J. Cosmol. Astropart. Phys., 1204, 013 (2012), arXiv:1109.4939
[387] Tassev, S.; Zaldarriaga, M., Estimating CDM particle trajectories in the mildly non-linear regime of structure formation. Implications for the density field in real and redshift space, J. Cosmol. Astropart. Phys., 1212, 011 (2012), arXiv:1203.5785
[388] Matsubara, T., Recursive solutions of Lagrangian perturbation theory, Phys. Rev. D, 92, 2, Article 023534 pp. (2015), arXiv:1505.01481
[389] Matsubara, T., Nonlinear perturbation theory with halo bias and redshift-space distortions via the Lagrangian picture, Phys. Rev. D. Phys. Rev. D, Phys. Rev. D, 78, Article 109901 pp. (2008), (Erratum) arXiv:0807.1733
[390] Munshi, D.; Sahni, V.; Starobinsky, A. A., Nonlinear approximations to gravitational instability: A comparison in the quasilinear regime, Astrophys. J., 436, 517 (1994), arXiv:astro-ph/9402065
[391] Sahni, V.; Shandarin, S., Behavior of Lagrangian approximations in spherical voids, Mon. Not. R. Astron. Soc., 282, 641 (1996), arXiv:astro-ph/9510142
[392] Carlson, J.; Reid, B.; White, M., Convolution Lagrangian perturbation theory for biased tracers, Mon. Not. R. Astron. Soc., 429, 1674 (2013), arXiv:1209.0780
[393] Green, S. R.; Wald, R. M., How well is our universe described by an FLRW model?, Classical Quantum Gravity, 31, Article 234003 pp. (2014), arXiv:1407.8084 · Zbl 1306.83006
[394] Buchert, T., Is there proof that backreaction of inhomogeneities is irrelevant in cosmology?, Classical Quantum Gravity, 32, Article 215021 pp. (2015), arXiv:1505.07800 · Zbl 1329.83208
[395] Green, S. R.; Wald, R. M., Comments on backreaction
[396] Blas, D.; Garny, M.; Konstandin, T., On the non-linear scale of cosmological perturbation theory, J. Cosmol. Astropart. Phys., 1309, 024 (2013), arXiv:1304.1546
[397] Almheiri, A.; Marolf, D.; Polchinski, J.; Stanford, D.; Sully, J., An apologia for firewalls, J. High Energy Phys., 09, 018 (2013), arXiv:1304.6483
[398] Giddings, S. B., Black holes, quantum information, and the foundations of physics, Phys. Today, 66, 4, 30-35 (2013)
[399] Maldacena, J.; Susskind, L., Cool horizons for entangled black holes, Fortschr. Phys., 61, 781-811 (2013), arXiv:1306.0533 · Zbl 1338.83057
[400] Hooft, G. T., Local conformal symmetry: the missing symmetry component for space and time · Zbl 1329.81236
[401] Dvali, G., Quantum black holes, Phys. Today, 68, 1, 38-43 (2015)
[402] Hawking, S. W., The information paradox for black holes · Zbl 0997.83105
[403] Buonanno, A.; Damour, T., Effective one-body approach to general relativistic two-body dynamics, Phys. Rev. D, 59, Article 084006 pp. (1999), arXiv:gr-qc/9811091
[404] Poisson, E.; Pound, A.; Vega, I., The motion of point particles in curved spacetime, Living Rev. Rel., 14, 7 (2011), arXiv:1102.0529 · Zbl 1316.83024
[405] Brezin, E.; Itzykson, C.; Zinn-Justin, J., Relativistic Balmer formula including recoil effects, Phys. Rev. D, 1, 2349-2355 (1970)
[406] Blanchet, L.; Faye, G.; Whiting, B. F., High-order half-integral conservative post-Newtonian coefficients in the redshift factor of black hole binaries, Phys. Rev. D, 90, 4, Article 044017 pp. (2014), arXiv:1405.5151
[408] Le Tiec, A.; Blanchet, L.; Whiting, B. F., The first law of binary black hole mechanics in general relativity and post-Newtonian theory, Phys. Rev. D, 85, Article 064039 pp. (2012), arXiv:1111.5378
[409] Kavanagh, C.; Ottewill, A. C.; Wardell, B., Analytical high-order post-newtonian expansions for extreme mass ratio binaries, Phys. Rev. D, 92, 8, Article 084025 pp. (2015), arXiv:1503.02334
[410] Johnson-McDaniel, N. K.; Shah, A. G.; Whiting, B. F., Experimental mathematics meets gravitational self-force, Phys. Rev. D, 92, 4, Article 044007 pp. (2015), arXiv:1503.02638
[411] Pound, A., Second-order gravitational self-force, Phys. Rev. Lett., 109, Article 051101 pp. (2012), arXiv:1201.5089
[412] Gralla, S. E., Second order gravitational self force, Phys. Rev. D, 85, Article 124011 pp. (2012), arXiv:1203.3189
[413] Detweiler, S. L., A consequence of the gravitational self-force for circular orbits of the Schwarzschild geometry, Phys. Rev. D, 77, Article 124026 pp. (2008), arXiv:0804.3529
[414] Bini, D.; Damour, T., High-order post-Newtonian contributions to the two-body gravitational interaction potential from analytical gravitational self-force calculations, Phys. Rev. D, 89, 6, Article 064063 pp. (2014), arXiv:1312.2503
[415] Todorov, I. T., Quasipotential equation corresponding to the relativistic eikonal approximation, Phys. Rev. D, 3, 2351-2356 (1971)
[416] Rizov, V. A.; Todorov, I. T.; Aneva, B. L., Quasipotential approach to the Coulomb bound state problem for spin 0 and spin 1/2 particles, Nuclear Phys. B, 98, 447 (1975)
[417] Lippmann, B. A.; Schwinger, J., Variational principles for scattering processes, Phys. Rev., 79, 469-480 (1950) · Zbl 0039.42406
[418] Monteiro, R.; O’Connell, D.; White, C. D., Black holes and the double copy, J. High Energy Phys., 12, 056 (2014), arXiv:1410.0239 · Zbl 1333.83048
[419] Ridgway, A. K.; Wise, M. B., Static spherically symmetric Kerr-Schild metrics and implications for the classical double copy
[420] Hubeny, V. E.; Minwalla, S.; Rangamani, M., The fluid/gravity correspondence, (Black holes in higher dimensions (2012)), 348-383, arXiv:1107.5780 · Zbl 1263.83009
[421] (Thorne, K. S.; Price, R. H.; Macdonald, D. A., Black Holes: The Membrane Paradigm (1986)) · Zbl 1374.83002
[422] Weinberg, S., The cosmological constant problem, Rev. Modern Phys., 61, 1-23 (1989) · Zbl 1129.83361
[423] Weinberg, S., The Cosmological Constant Problems, 18-26 (2000)
[424] Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.; Gabadadze, G., Nonlocal modification of gravity and the cosmological constant problem
[425] Porto, R. A.; Zee, A., Relaxing the cosmological constant in the extreme ultra-infrared, Classical Quantum Gravity, 27, Article 065006 pp. (2010), arXiv:0910.3716 · Zbl 1187.85032
[426] Porto, R. A.; Zee, A., Reasoning by analogy: attempts to solve the cosmological constant paradox, Modern Phys. Lett. A, 25, 2929-2932 (2010), arXiv:1007.2971 · Zbl 1202.01098
[428] Arkani-Hamed, N., Beyond the standard model theory, Phys. Scr. T, 158, Article 014023 pp. (2013)
[429] Hartnoll, S. A., Lectures on holographic methods for condensed matter physics, Classical Quantum Gravity, 26, Article 224002 pp. (2009), arXiv:0903.3246 · Zbl 1181.83003
[430] Matzner, R. A., Scattering of massless scalar waves by a Schwarzschild singularity, J. Math. Phys., 9, 163 (1968)
[431] Mashhoon, B., Scattering of electromagnetic radiation from a black hole, Phys. Rev. D, 7, 2807-2814 (1973)
[432] Sanchez, N. G., Absorption and emission spectra of a schwarzschild black hole, Phys. Rev. D, 18, 1030 (1978)
[433] Berti, E.; Cardoso, V.; Starinets, A. O., Quasinormal modes of black holes and black branes, Classical Quantum Gravity, 26, Article 163001 pp. (2009), arXiv:0905.2975 · Zbl 1173.83001
[434] Leaver, E. W., Spectral decomposition of the perturbation response of the schwarzschild geometry, Phys. Rev. D, 34, 384-408 (1986) · Zbl 1222.83053
[435] Distler, J.; Grinstein, B.; Porto, R. A.; Rothstein, I. Z., Falsifying models of new physics via WW scattering, Phys. Rev. Lett., 98, Article 041601 pp. (2007), arXiv:hep-ph/0604255
[436] Guerlebeck, N., No-hair theorem for black holes in astrophysical environments, Phys. Rev. Lett., 114, 15, Article 151102 pp. (2015), arXiv:1503.03240
[437] Hartle, J. B., Tidal shapes and shifts on rotating black holes, Phys. Rev. D, 9, 2749-2759 (1974)
[438] Damour, T.; Lecian, O. M., On the gravitational polarizability of black holes, Phys. Rev. D, 80, Article 044017 pp. (2009), arXiv:0906.3003
[439] Dvali, G.; Gomez, C.; Isermann, R. S.; Lüst, D.; Stieberger, S., Black hole formation and classicalization in ultra-Planckian \(2 \to N\) scattering, Nuclear Phys. B, 893, 187-235 (2015), arXiv:1409.7405 · Zbl 1348.83047
[441] Emparan, R.; Suzuki, R.; Tanabe, K., The large D limit of general relativity, J. High Energy Phys., 06, 009 (2013), arXiv:1302.6382 · Zbl 1342.83152
[442] Emparan, R.; Suzuki, R.; Tanabe, K., Decoupling and non-decoupling dynamics of large D black holes, J. High Energy Phys., 07, 113 (2014), arXiv:1406.1258 · Zbl 1390.83194
[443] Guica, M.; Hartman, T.; Song, W.; Strominger, A., The Kerr/CFT correspondence, Phys. Rev. D, 80, Article 124008 pp. (2009), arXiv:0809.4266
[444] Bredberg, I.; Hartman, T.; Song, W.; Strominger, A., Black hole superradiance from Kerr/CFT, J. High Energy Phys., 04, 019 (2010), arXiv:0907.3477 · Zbl 1272.83041
[445] Compere, G., The Kerr/CFT correspondence and its extensions: a comprehensive review, Living Rev. Rel., 15, 11 (2012) · Zbl 1320.83001
[446] Porfyriadis, A. P.; Strominger, A., Gravity waves from the Kerr/CFT correspondence, Phys. Rev. D, 90, 4, Article 044038 pp. (2014), arXiv:1401.3746
[447] Hadar, S.; Porfyriadis, A. P.; Strominger, A., Gravity waves from extreme-mass-ratio plunges into Kerr black holes, Phys. Rev. D, 90, 6, Article 064045 pp. (2014), arXiv:1403.2797
[448] Hadar, S.; Porfyriadis, A. P.; Strominger, A., Fast plunges into Kerr black holes, J. High Energy Phys., 07, 078 (2015), arXiv:1504.07650 · Zbl 1388.83454
[449] Giddings, S. B., Black holes, quantum information, and unitary evolution, Phys. Rev. D, 85, Article 124063 pp. (2012), arXiv:1201.1037
[450] Giddings, S. B., Nonviolent information transfer from black holes: A field theory parametrization, Phys. Rev. D, 88, 2, Article 024018 pp. (2013), arXiv:1302.2613
[451] Giddings, S. B., Hilbert space structure in quantum gravity: an algebraic perspective, J. High Energy Phys., 12, 099 (2015), arXiv:1503.08207 · Zbl 1388.83116
[452] Giddings, S. B., Possible observational windows for quantum effects from black holes, Phys. Rev. D, 90, 12, Article 124033 pp. (2014), arXiv:1406.7001
[453] Dvali, G.; Gomez, C., Black Hole’s quantum N-portrait, Fortschr. Phys., 61, 742-767 (2013), arXiv:1112.3359 · Zbl 1338.83071
[454] Dvali, G.; Gomez, C., Black hole macro-quantumness · Zbl 1338.83071
[455] Dvali, G.; Gomez, C., Quantum compositeness of gravity: black holes, AdS and inflation, J. Cosmol. Astropart. Phys., 1401, 023 (2014), arXiv:1312.4795
[456] Dvali, G.; Gomez, C.; Luest, D., Classical limit of black hole quantum N-portrait and BMS symmetry, Phys. Lett. B, 753, 173-177 (2016), arXiv:1509.02114 · Zbl 1367.83044
[457] Strominger, A., On BMS invariance of gravitational scattering, J. High Energy Phys., 07, 152 (2014), arXiv:1312.2229 · Zbl 1392.81215
[458] Hawking, S. W.; Perry, M. J.; Strominger, A., Soft hair on black holes · Zbl 1380.83143
[459] Averin, A.; Dvali, G.; Gomez, C.; Lust, D., Gravitational black hole hair from event horizon supertranslations · Zbl 1388.83375
[460] Giddings, S. B., Gravitational wave tests of quantum modifications to black hole structure
[461] Dvali, G. R.; Gabadadze, G.; Porrati, M., 4-D gravity on a brane in 5-D Minkowski space, Phys. Lett. B, 485, 208-214 (2000), arXiv:hep-th/0005016 · Zbl 0961.83045
[462] Smirnov, V. A., Feynman Integral Calculus (2006), Springer: Springer Berlin, Germany · Zbl 1111.81003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.