×

The novel classes of finite dimensional filters with non-maximal rank estimation algebra on state dimension four and rank of one. (English) Zbl 1472.93186

Summary: Ever since the technique of Kalman-Bucy filter was popularised, finding new classes of finite dimensional recursive filters has drawn much concern. The idea of using estimation algebra to construct finite-dimensional nonlinear filters was first proposed by Brockett and Mitter independently in the late 1970s, which has been proven an invaluable tool in tackling nonlinear filtering (NLF) problems. Once the estimation algebra is finite dimensional, one can construct the finite dimensional filters (FDFs) for NLF problems by Wei-Norman approach. In this paper, we give the construction of finite dimensional estimation algebra (FDEA) with state space dimension 4 and linear rank equal to 1, and further obtain a new class of NLF systems with FDFs. Importantly, we show that there is a class of polynomial FDF system in state space dimension 4 with linear rank one, but the coefficients in Wong’s \(\Omega\)-matrix are polynomials of degree two, or higher. In particular, these are the first examples of polynomial filtering systems not of Yau type (i.e. the drift term is not gradient plus affine functions) but with FDFs. Furthermore, we write down several easily satisfied sufficient conditions for the construction of more special classes of FDFs. Additionally, we derive the FDFs for the proposed NLF systems by using the Wei-Norman approach.

MSC:

93E11 Filtering in stochastic control theory
93C35 Multivariable systems, multidimensional control systems
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] Brockett, R. W. (1981). Nonlinear systems and nonlinear estimation theory. In M. Hazewinkel & J. C. Willems (Eds.), The mathematics of filteing and identification and applications (pp. 441-477). Springer, Dordrecht: Reidel. · Zbl 0505.93064
[2] Brockett, R. W., & Clark, J. M. C. (1980). The geometry of the conditional density functions. In O. L. R. Jacobs, et al. (Eds.), Analysis and optimisation of stochastic systems (pp. 399-409). New Tork: Academic.
[3] Budhiraja, A.; Chen, L.; Lee, C., A survey of numerical methods for nonlinear filtering problems, Physics D, 230, 27-36 (2007) · Zbl 1114.65301 · doi:10.1016/j.physd.2006.08.015
[4] Chen, J.; Yau, S. S. T., Finite dimensional filters with nonlinear drift VI: Linear structure of Ω matrix, Mathematics of Control, Signals, and Systems, 9, 370-385 (1996) · Zbl 0876.93090 · doi:10.1007/BF01211857
[5] Chiou, W. L.; Yau, S. S. T., Finite dimensional filters with nonlinear drift II: Brockett’s problem on classification of finite dimensional estimation algebra, SIAM Journal on Control and Optimization, 32, 1, 297-310 (1995) · Zbl 0809.93060 · doi:10.1137/S0363012991201660
[6] Crisan, D.; Lyons, T., A particle approximation of the solution of the Kusher-Stratonovich equation, Probability Theory and Related Fields, 115, 549-578 (1999) · Zbl 0951.93068 · doi:10.1007/s004400050249
[7] Davis, M. H. A., & Marcus, S. I. (1981). An introduction to nonlinear filtering. In M. Hazewinkel & J. S. Williams (Eds.), Stochastic systems: The mathematics of filtering and identification and applications (pp. 53-75). Dordrecht: D. Reidel Pub. Co.. · Zbl 0491.93060
[8] Dong, R. T.; Tam, L. F.; Wong, W. S.; Yau, S. S. T., Structure and classification theorems of finite dimensional exact estimation algebras, SIAM Journal on Control and Optimization, 29, 4, 866-877 (1991) · Zbl 0732.17010 · doi:10.1137/0329047
[9] Duncan, D. E. (1967). Probability density for diffusion processes with applications to nonlinear filtering theory and diffusion theory (Ph.D. dissertation). Stanford Univ., Stanford, CA.
[10] Gillijns, S., Barrero Mendoza, O., Chandrasekar, J., De Moor, B. L. R., Bernstein, D. S., & Ridley, A. (2006). What is the ensemble Kalman filter and how well does it work? Proc. IEEE Ameri. Contr. Conf. (ACC), Minneapolis, Minnesota, USA (pp. 4448-4453).
[11] Kalman, R. E., A new approach to linear filtering and prediction problems, Journal of Basic Engineering, 82, 1, 35-45 (1960) · doi:10.1115/1.3662552
[12] Kalman, R. E.; Bucy, R. S., New results in linear filtering and prediction theory, Journal of Basic Engineering, 83, 95-108 (1961) · Zbl 07915244 · doi:10.1115/1.3658902
[13] Kan, R., From moments of sum to moments of product, Journal of Multivariate Analysis, 99, 3, 542-554 (2008) · Zbl 1133.60307 · doi:10.1016/j.jmva.2007.01.013
[14] Kushner, H. J., Dynamical equations for optimal nonlinear filtering, Journal of Differential Equations, 3, 2, 179-190 (1967) · Zbl 0158.16801 · doi:10.1016/0022-0396(67)90023-X
[15] Marcus, S. I., Algebraic and geometric methods in nonlinear filtering, SIAM Journal on Control and Optimization, 22, 817-844 (1984) · Zbl 0548.93073 · doi:10.1137/0322052
[16] Maurel, M. C.; Michel, D., Des resultats de non existence de filtre de dimension finie, Stochastics, 13, 83-102 (1984) · Zbl 0536.60054 · doi:10.1080/17442508408833312
[17] Mitter, S. K., On the analogy between mathematical problems of nonlinear filtering and quantum physics, Richerche di Automatica, 10, 163-216 (1979)
[18] Mortensen, N. E. (1966). Optimal control of continuous-time stochastic systems (Ph.D. dissertation). Univ. California, Berkeley, CA. · Zbl 0201.48403
[19] Shi, J.; Chen, X. Q.; Dong, W. H.; Yau, S. S. T., New classes of finite dimensional filters with non-maximal rank, IEEE Control Systems Letters, 1, 2, 233-237 (2017) · doi:10.1109/LCSYS.2017.2713604
[20] Shi, J.; Yau, S. S. T., Finite dimensional estimation algebras with state dimension 3 and rank 2, I: linear structure of Wong matrix, SIAM Journal on Control and Optimization, 55, 6, 4227-4246 (2017) · Zbl 1430.17042 · doi:10.1137/16M1065471
[21] Tam, L. F.; Wong, W. S.; Yau, S. S. T., On a necessary and sufficient condition for finite dimensionality of estimation algebras, SIAM Journal on Control and Optimization, 28, 1, 173-185 (1990) · Zbl 0694.93103 · doi:10.1137/0328009
[22] Wan, E. A., & Van der Merwe, R. (2000). The unscented Kalman filter for nonlinear estimation. Proc. IEEE 2000 Adaptive Syst. Sign. Process., Commu., Contr. Symposium (AS-SPCC), Lake Louise, Alberta, Canada (pp. 153-158).
[23] Wei, J.; Norman, E., On global representations of the solutions of linear differential equations as a product of exponentials, Proceedings of the American Mathematical Society, 15, 327-334 (1964) · Zbl 0119.07202 · doi:10.1090/S0002-9939-1964-0160009-0
[24] Wong, W. S., On a new class of finite dimensional estimation algebras, Systems & Control Letters, 9, 1, 79-83 (1987) · Zbl 0628.93068 · doi:10.1016/0167-6911(87)90012-0
[25] Wu, X.; Yau, S. S. T., Classification of estimation algebras with state dimension 2, SIAM Journal on Control and Optimization, 45, 1039-1073 (2006) · Zbl 1116.93052 · doi:10.1137/S036301290443991X
[26] Yau, S. S. T., Finite dimensional filters with nonlinear drift I: A class of filters including both Kalman-Bucy filters and Benes filters, Journal of Mathematical Systems, Estimation, and Control, 4, 2, 181-203 (1994) · Zbl 0811.93059
[27] Yau, S. S. T., Complete classification of finite-dimensional estimation algebras of maximal rank, International Journal of Control, 76, 657-677 (2003) · Zbl 1040.93065 · doi:10.1080/0020717031000098435
[28] Yau, S. S. T.; Hu, G. Q., Classification of finite-dimensional estimation algebras of maximal rank with arbitrary state space dimension and mitter conjecture, International Journal of Control, 78, 10, 689-705 (2005) · Zbl 1121.93068 · doi:10.1080/00207170500107596
[29] Yau, S. S. T.; Wu, X.; Wong, W. S., Hessian matrix non-decomposition theorem, Mathematical Research Letters, 6, 1-11 (1999) · Zbl 0952.42005 · doi:10.4310/MRL.1999.v6.n1.a1
[30] Zakai, M., On the optimal filtering of diffusion processes, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 11, 3, 230-243 (1969) · Zbl 0164.19201 · doi:10.1007/BF00536382
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.