×

Continuous-discrete path integral filtering. (English) Zbl 1179.35329

Summary: A summary of the relationship between the Langevin equation, Fokker-Planck-Kolmogorov forward equation (FPKfe) and the Feynman path integral descriptions of stochastic processes relevant for the solution of the continuous-discrete filtering problem is provided in this paper. The practical utility of the path integral formula is demonstrated via some nontrivial examples. Specifically, it is shown that the simplest approximation of the path integral formula for the fundamental solution of the FPKfe can be applied to solve nonlinear continuous-discrete filtering problems quite accurately. The Dirac-Feynman path integral filtering algorithm is quite simple, and is suitable for real-time implementation.

MSC:

35Q84 Fokker-Planck equations

References:

[1] Jazwinski, Stochastic Processes and Filtering Theory (1970)
[2] Kalman, A new approach to linear filtering and prediction problems, Trans. ASME, J. Basic Eng. 82 pp 35– (1960) · doi:10.1115/1.3662552
[3] Kalman, New results in linear filtering and prediction problems, Trans. ASME, J. Basic Eng. 83 pp 95– (1961) · doi:10.1115/1.3658902
[4] Daum, Exact finite-dimensional nonlinear filters, Automatic Control, IEEE Transactions on 31 pp 616– (1986) · Zbl 0621.93067 · doi:10.1109/TAC.1986.1104344
[5] Thomée, Handbook of Numerical Analysis Vol. 1 pp 5– (1990)
[6] Marchuk, Handbook of Numerical Analysis Vol. 1 pp 197– (1990)
[7] Canuto, Spectral Methods: Fundamentals in Single Domains (2006) · Zbl 1093.76002
[8] Thomée, Galerkin Finite Element Methods for Parabolic Problems Vol. 25 (1997) · Zbl 0884.65097
[9] Feynman, Quantum Mechanics and Path Integrals (1965)
[10] Zinn-Justin, Quantum Field Theory and Critical Phenomena (2002) · Zbl 0865.00014
[11] Langouche, Functional Integration and Semiclassical Expansions (1982)
[12] DOI: 10.1007/BF01182625 · Zbl 0862.35017 · doi:10.1007/BF01182625
[14] DOI: 10.1145/1186785.1186794 · Zbl 1230.65054 · doi:10.1145/1186785.1186794
[16] DOI: 10.1049/ip-f-2.1993.0015 · doi:10.1049/ip-f-2.1993.0015
[17] DOI: 10.1016/j.physd.2006.08.015 · Zbl 1114.65301 · doi:10.1016/j.physd.2006.08.015
[19] DOI: 10.1109/9.704992 · Zbl 0957.93085 · doi:10.1109/9.704992
[20] DOI: 10.1109/78.984773 · Zbl 1369.60015 · doi:10.1109/78.984773
[24] Montváy, Quantum Fields on a Lattice (1997)
[25] DOI: 10.1088/0305-4470/18/17/012 · Zbl 0586.35048 · doi:10.1088/0305-4470/18/17/012
[26] DOI: 10.1186/1754-0410-3-2 · doi:10.1186/1754-0410-3-2
[27] DOI: 10.1088/1742-5468/2008/01/P01014 · doi:10.1088/1742-5468/2008/01/P01014
[28] DOI: 10.3390/e11010042 · Zbl 1179.81108 · doi:10.3390/e11010042
[29] Whittle, Likelihood and Cost as Path Integrals, J. Roy. Stat. Soc. Ser. B 53 pp 505– (1991)
[30] Archambeau, Gaussian process approximations of stochastic differential equations, Journal of Machine Learning Research Workshop and Conference Proceedings (2007)
[31] DOI: 10.1016/j.neuroimage.2008.03.017 · doi:10.1016/j.neuroimage.2008.03.017
[32] DOI: 10.1016/j.neuroimage.2006.08.035 · doi:10.1016/j.neuroimage.2006.08.035
[33] DOI: 10.1016/j.neuroimage.2008.02.054 · doi:10.1016/j.neuroimage.2008.02.054
[34] DOI: 10.1007/s10955-005-3770-1 · Zbl 1088.82026 · doi:10.1007/s10955-005-3770-1
[35] DOI: 10.1016/j.physd.2007.07.020 · Zbl 1173.62343 · doi:10.1016/j.physd.2007.07.020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.