×

3D analytical solution for a rotating transversely isotropic annular plate of functionally graded materials. (English) Zbl 1117.74034

Summary: An analytical solution for annular plate rotating at constant angular velocity is derived by means of direct displacement method from axisymmetric elasticity equations for functionally graded transversely isotropic media. The displacement components are assumed to be a linear combination of certain explicit functions of radial coordinate, with seven undetermined coefficients being functions of the axial coordinate \(z\). Seven equations governing these \(z\)-dependent functions are derived and solved by an integrating scheme. The present solution can be degenerated into the solution for a rotating isotropic functionally graded annular plate. The solution also can be degenerated into that for transversely isotropic or isotropic homogeneous materials. Finally, a special case is considered, and the effect of material gradient index on the elastic field is illustrated numerically.

MSC:

74K20 Plates
74E05 Inhomogeneity in solid mechanics
74G05 Explicit solutions of equilibrium problems in solid mechanics
Full Text: DOI

References:

[1] Chen, W.Q., Lee, K.Y., 2004. Stresses in rotating cross-ply laminated hollow cylinders with arbitrary thickness. The Journal of Strain Analysis for Engineering Design, 39(5):437-445. [doi:10.1243/0309324041896416] · doi:10.1243/0309324041896416
[2] Chen, J.Y., Ding, H.J., Hou, P.F., 2003. Three-dimensional analysis of magnetoelectroelastic rotating annular plate. J. Zhejiang Univ. (Engineering Science), 37(4):440 (in Chinese).
[3] Chen, J.Y., Ding, H.J., Chen, W.Q., 2007. Three-dimensional analytical solution for a rotating disc of functionally graded materials with transverse isotropy. Arch. Appl. Mech., 77(4):241-251. [doi:10.1007/s00419-006-0098-5] · Zbl 1161.74427 · doi:10.1007/s00419-006-0098-5
[4] Ding, H.J., Chen, W.Q., Zhang, L., 2006. Elasticity of Transversely Isotropic Materials. Springer, Dordrecht. · Zbl 1101.74001
[5] Jain, R., Ramachandra, K., Simha, K.R.Y., 1999. Rotating anisotropic disc of uniform strength. Int. J. Mech. Sci., 41(6):639-648. [doi:10.1016/S0020-7403(98)00041-1] · Zbl 0953.74026 · doi:10.1016/S0020-7403(98)00041-1
[6] Kordkheili, H.S.A., Naghdabadi, R., 2007. Thermoelastic analysis of a functionally graded rotating disk. Compos. Struct., 79(4):508-516. [doi:10.1016/j.compstruct.2006.02.010] · Zbl 1194.74055 · doi:10.1016/j.compstruct.2006.02.010
[7] Leissa, A.W., Vagins, M., 1978. The design of orthotropic materials for stress optimization. Int. J. Solids Struct., 14(6):517-526. [doi:10.1016/0020-7683(78)90014-8] · Zbl 0377.73077 · doi:10.1016/0020-7683(78)90014-8
[8] Lekhnitskii, S.G., 1968. Anisotropic Plates. Gordon and Breach, London.
[9] Mian, M.A., Spencer, A.J.M., 1998. Exact solutions for functionally graded and laminated elastic materials. J. Mech. Phys. Solids, 46(12):2283-2295. [doi:10.1016/S0022-5096(98)00048-9] · Zbl 1043.74008 · doi:10.1016/S0022-5096(98)00048-9
[10] Murthy, D.N.S., Sherbourne, A.N., 1970. Elastic stresses in anisotropic disks of variable thickness. Int. J. Mech. Sci., 12(7):627-640. [doi:10.1016/0020-7403(70)90093-7] · doi:10.1016/0020-7403(70)90093-7
[11] Ramu, S.A., Iyengar, K.J., 1974. Quasi-three dimensional elastic stresses in rotating disks. Int. J. Mech. Sci., 16(7):473-477. [doi:10.1016/0020-7403(74)90087-3] · doi:10.1016/0020-7403(74)90087-3
[12] Seireg, A., Surana, K.S., 1970. Optimum design of rotating disks. J. Eng. Ind., 92:1-10. · doi:10.1115/1.3427709
[13] Timoshenko, S.P., Goodier, J.N., 1970. Theory of Elasticity (3rd Ed.). McGraw-Hill, New York. · Zbl 0266.73008
[14] Yeh, K.Y., Han, R.P.S., 1994. Analysis of high-speed rotating disks with variable thickness and inhomogeneity. J. Appl. Mech., 61:186-191. · Zbl 0800.73190 · doi:10.1115/1.2901396
[15] Zhou, F., Ogawa, A., 2002. Elastic solutions for a solid rotating disk with cubic anisotropy. J. Appl. Mech., 69(1):81-83. [doi:10.1115/1.1406958] · Zbl 1110.74802 · doi:10.1115/1.1406958
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.