×

Higher dimensional unitary braid matrices: construction, associated structures, and entanglements. (English) Zbl 1144.81301

Summary: We construct \((2n)^2\times (2n)^2\) unitary braid matrices \(\hat{R}\) for \(n\geq 2\) generalizing the class known for \(n=1\). A set of \((2n)\times (2n)\) matrices \((I,J,K,L)\) are defined. \(\hat{R}\) is expressed in terms of their tensor products (such as \(K\otimes J\)), leading to a canonical formulation for all \(n\). Complex projectors \(P_{\pm}\) provide a basis for our real, unitary \(\hat{R}\). Baxterization is obtained. Diagonalizations and block-diagonalizations are presented. The loss of braid property when \(\hat{R}\) \((n>1)\) is block-diagonalized in terms of \(\hat{R}\) \((n=1)\) is pointed out and explained. For odd dimension \((2n+1)^2\times (2n+1)^2\), a previously constructed braid matrix is complexified to obtain unitarity. \(\hat{R}\mathrm{LL}\)- and \(\hat{R}\mathrm{TT}\)-algebras, chain Hamiltonians, potentials for factorizable \(S\)-matrices, complex non-commutative spaces are all studied briefly in the context of our unitary braid matrices. Turaev construction of link invariants is formulated for our case. We conclude with comments concerning entanglements.

MSC:

81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
15B99 Special matrices
81P40 Quantum coherence, entanglement, quantum correlations
81R12 Groups and algebras in quantum theory and relations with integrable systems
81U20 \(S\)-matrix theory, etc. in quantum theory

References:

[1] DOI: 10.1142/S0217751X03016100 · Zbl 1039.81032 · doi:10.1142/S0217751X03016100
[2] DOI: 10.1007/s00023-006-0283-7 · Zbl 1228.16035 · doi:10.1007/s00023-006-0283-7
[3] DOI: 10.1088/1367-2630/6/1/034 · doi:10.1088/1367-2630/6/1/034
[4] DOI: 10.1142/S0218216506004580 · Zbl 1097.20034 · doi:10.1142/S0218216506004580
[5] DOI: 10.1016/S0550-3213(01)00308-X · Zbl 0970.81107 · doi:10.1016/S0550-3213(01)00308-X
[6] DOI: 10.1142/S0219749905001547 · Zbl 1090.81023 · doi:10.1142/S0219749905001547
[7] DOI: 10.1063/1.1900291 · Zbl 1110.82019 · doi:10.1063/1.1900291
[8] DOI: 10.1063/1.1924701 · Zbl 1110.15029 · doi:10.1063/1.1924701
[9] DOI: 10.1063/1.2197690 · Zbl 1111.82012 · doi:10.1063/1.2197690
[10] DOI: 10.1063/1.2374882 · Zbl 1112.82009 · doi:10.1063/1.2374882
[11] DOI: 10.1063/1.1516845 · Zbl 1060.81041 · doi:10.1063/1.1516845
[12] DOI: 10.1007/3-540-11190-5_8 · doi:10.1007/3-540-11190-5_8
[13] DOI: 10.1142/S0217751X89000959 · Zbl 0693.58045 · doi:10.1142/S0217751X89000959
[14] DOI: 10.1016/0920-5632(91)90143-3 · doi:10.1016/0920-5632(91)90143-3
[15] DOI: 10.1088/0305-4470/25/2/026 · Zbl 0764.17014 · doi:10.1088/0305-4470/25/2/026
[16] Madore J., An Introduction to Noncommutative Geometry (1999) · Zbl 0974.81030
[17] DOI: 10.1007/PL00005553 · Zbl 0979.58003 · doi:10.1007/PL00005553
[18] DOI: 10.1007/BF01393746 · Zbl 0648.57003 · doi:10.1007/BF01393746
[19] Chari V., Quantum Groups (1994)
[20] DOI: 10.1063/1.1343881 · Zbl 1013.81027 · doi:10.1063/1.1343881
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.