×

A second-order adaptive DLN algorithm with different subdomain variable time steps for the 3D closed-loop geothermal system. (English) Zbl 07859638

Summary: In this paper, we propose a second-order adaptive DLN algorithm with different subdomain variable time steps for the 3D closed-loop geothermal system. Theoretically, the stability and convergence of the algorithm in the case of variable time steps are analyzed. In numerical experiments, the DLN algorithm is combined with an adaptive algorithm to verify not only its effectiveness and second-order convergence under any arbitrary sequence of time steps but also to improve computational efficiency. We overcome the difficulty of 3D programming, and verify the applicability and accuracy of the proposed algorithm by simulating the flow characteristics and heat transfer of the closed-loop geothermal system with 3D convection.

MSC:

65-XX Numerical analysis
93-XX Systems theory; control
Full Text: DOI

References:

[1] Panwar, N. L.; Kaushik, S. C.; Kothari, S., Role of renewable energy sources in environmental protection: a review, Renew. Sustain. Energy Rev., 15, 3, 1513-1524, 2011
[2] Qin, Y.; Wang, Y. S.; Li, J., A variable time step time filter algorithm for the geothermal system, SIAM J. Numer. Anal., 60, 5, 2781-2806, 2022 · Zbl 1505.76061
[3] Qin, Y.; Hou, Y. R.; Pei, W. L.; Li, J., A variable time-stepping algorithm for the unsteady Stokes/Darcy model, Comput. Math. Appl., 394, Article 113521 pp., 2021 · Zbl 1465.76055
[4] Li, J., Numerical Methods for the Incompressible Navier-Stokes Equations, 2019, Science Press: Science Press Beijing, (in Chinese)
[5] Li, J.; Bai, Y. X.; Zhao, X., Modern Numerical Methods for Mathematical Physics Equations, 2022, Science Press: Science Press Beijing, (in Chinese)
[6] Li, J.; Lin, X. L.; Chen, Z. X., Finite Volume Methods for the Incompressible Navier-Stokes Equations, 2021, Springer-Verlag: Springer-Verlag Berlin, Heidelberg
[7] Qin, Y.; Chen, L. L.; Wang, Y.; Li, Y.; Li, J., An adaptive time-stepping DLN decoupled algorithm for the coupled Stokes-Darcy model, Appl. Numer. Math., 188, 106-128, 2023 · Zbl 1517.76049
[8] Shan, L.; Zheng, H. B.; Layton, W. J., A decoupling method with different subdomain time steps for the nonstationary Stokes-Darcy model, Numer. Methods Partial Differ. Equ., 29, 2, 549-583, 2013 · Zbl 1364.76096
[9] Li, Y.; Hou, Y. R., A second-order partitioned method with different subdomain time steps for the evolutionary Stokes-Darcy system, Math. Methods Appl. Sci., 41, 5, 2178-2208, 2018 · Zbl 1392.35230
[10] Boland, J.; Layton, W. J., An analysis of the finite element method for natural convection problems, Numer. Methods Partial Differ. Equ., 6, 2, 115-126, 1990 · Zbl 0703.76071
[11] Burns, J. A.; He, X. M.; Hu, W. W., Feedback stabilization of a thermal fluid system with mixed boundary control, Comput. Math. Appl., 71, 11, 2170-2191, 2016 · Zbl 1443.76128
[12] Zhang, Y. Z.; Hou, Y. R.; Zhao, J., Error analysis of a fully discrete finite element variational multiscale method for the natural convection problem, Comput. Math. Appl., 68, 4, 543-567, 2014 · Zbl 1362.76056
[13] Zhang, Y. Z.; Hou, Y. R.; Zheng, H. B., A finite element variational multiscale method for steady-state natural convection problem based on two local Gauss integrations, Numer. Methods Partial Differ. Equ., 30, 2, 361-375, 2014 · Zbl 1452.76226
[14] Wan, C.; Patnaik, B.; Wei, G., A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution, Numer. Heat Transf., Part B, 40, 3, 199-228, 2001
[15] Lou, F.; Tang, T.; Xie, H., Parameter-free time adaptivity based on energy evolution for the Cahn-Hilliard equation, Commun. Comput. Phys., 19, 1542-1563, 2016 · Zbl 1388.65060
[16] Qin, Y.; Wang, Y.; Chen, L. L.; Li, Y.; Li, J., A second-order adaptive time filter algorithm with different subdomain variable time steps for the evolutionary Stokes/Darcy model, Comput. Math. Appl., 150, 170-195, 2023 · Zbl 1538.76190
[17] Hirata, S. C.; Goyeau, B.; Gobin, D.; Carr, M.; Cotta, R. M., Linear stability of natural convection in superposed fluid and porous layers: influence of the interfacial modeling, Int. J. Heat Mass Transf., 50, 7-8, 1356-1367, 2007 · Zbl 1118.80003
[18] Burman, E.; Fernández, M. A., Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility, Comput. Methods Appl. Mech. Eng., 198, 5-8, 766-784, 2009 · Zbl 1229.76045
[19] Hansbo, P., Nitsche’s method for interface problems in computational mechanics, GAMMMitt., 28, 2, 183-206, 2005 · Zbl 1179.65147
[20] Deteix, J.; Jendoubi, A.; Yakoubi, D., A coupled prediction scheme for solving the Navier-Stokes and convection-diffusion equations, SIAM J. Numer. Anal., 52, 5, 2415-2439, 2014 · Zbl 1307.76072
[21] Abdullah Al Mahbub, M.; He, X. M.; Nasu, N. J., A coupled multiphysics model and a decoupled stabilized finite element method for the closed-loop geothermal system, SIAM J. Sci. Comput., 42, 4, B951-B982, 2020 · Zbl 1459.76076
[22] Song, X.; Shi, Y.; Li, G., Numerical analysis of the heat production performance of a closed loop geothermal system, Renew. Energy, 120, 365-378, 2018
[23] Girault, V.; Raviart, P., Finite Element Approximations of the Navier-Stokes Equations, 1979, Springer-Verlag: Springer-Verlag Berlin · Zbl 0413.65081
[24] Garapati, N.; Randolph, J. B.; Valencia, J. L.; Saar, M. O., CO_2-plume geothermal (CPG) heat extraction in multi-layered geologic reservoirs, Energy Proc., 63, 7631-7643, 2014
[25] Adams, R. A.; Fournier, J. I., Sobolev Spaces, 2003, Elsevier · Zbl 1098.46001
[26] Heywood, J. G.; Rannacher, R., Finite element approximation of the nonstationary Navier-Stokes problem, Part IV: error analysis for second-order time discretization, SIAM J. Numer. Anal., 27, 2, 353-384, 1990 · Zbl 0694.76014
[27] Shan, L.; Hou, Y. R., A fully discrete stabilized finite element method for the time-dependent Navier-Stokes equations, Appl. Math. Comput., 215, 1, 85-99, 2009 · Zbl 1172.76027
[28] Thomée, V., Galerkin Finite Element Methods for Parabolic Problems, Lect. Notes Math., vol. 1054, 1984 · Zbl 0528.65052
[29] Oldenburg, C.; Pan, L.; Muir, M.; Eastman, A.; Higgins, B. S., Numerical Simulation of Critical Factors Controlling Heat Extraction from Geothermal Systems Using a Closed-Loop Heat Exchange Method, 2019, Lawrence Berkeley National Lab. (LBNL): Lawrence Berkeley National Lab. (LBNL) Berkeley, CA
[30] Riahi, A.; Moncarz, P.; Kolbe, W.; Damjanac, B., Innovative closed-loop geothermal well designs using water and super critical carbon dioxide as working fluids, (Proceedings, Forty-Second Workshop on Geothermal Reservoir Engineering, 2017, Stanford University: Stanford University Stanford, CA), 13-15
[31] Choi, W.; Ooka, R., Effect of natural convection on thermal response test conducted in saturated porous formation: comparison of gravel-backfilled and cement-grouted borehole heat exchangers, Renew. Energy, 96, 891-903, 2016
[32] Dahlquist, G. G.; Liniger, W.; Nevanlinna, O., Stability of two-step methods for variable integration steps, SIAM J. Numer. Anal., 20, 5, 107-1085, 1983 · Zbl 0526.65049
[33] Layton, W. J.; Schieweck, F.; Yotov, I., Coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 40, 6, 2195-2218, 2002 · Zbl 1037.76014
[34] Discacciati, M.; Quarteroni, A.; Valli, A., Robin-Robin domain decomposition methods for the Stokes-Darcy coupling, SIAM J. Numer. Anal., 45, 3, 1246-1268, 2007 · Zbl 1139.76030
[35] Arnold, D. N.; Brezzi, F.; Fortin, M., A stable finite element for the Stokes equations, Calcolo, 21, 4, 337-344, 1984 · Zbl 0593.76039
[36] Brezzi, F.; Douglas, J.; Marini, L. D., Two families of mixed elements for second order elliptic problems, Numer. Math., 47, 217-235, 1985 · Zbl 0599.65072
[37] Hansbo, P.; Hermansson, J., Nitsche’s method for coupling non-matching meshes in fluid-structure vibration problems, Comput. Mech., 32, 134-139, 2003 · Zbl 1035.74055
[38] Mu, M.; Zhu, X. H., Decoupled schemes for a non-stationary mixed Stokes-Darcy model, Math. Comput., 79, 270, 707-731, 2010 · Zbl 1369.76026
[39] Iryna, R.; Magiera, J., A multiple-time-step technique for coupled free flow and porous medium systems, J. Comput. Phys., 272, 327-342, 2014 · Zbl 1349.76827
[40] Hecht-Méndez, J.; De Paly, M.; Beck, M.; Bayer, P., Optimization of energy extraction for vertical closed-loop geothermal systems considering groundwater flow, Energy Convers. Manag., 66, 1-10, 2013
[41] Cai, M. C.; Mu, M.; Xu, J. C., Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach, SIAM J. Numer. Anal., 47, 5, 3325-3338, 2009 · Zbl 1213.76131
[42] Wakashima, S.; Saitoh, T. S., Benchmark solutions for natural convection in a cubic cavity using the high-order time-space method, Int. J. Heat Mass Transf., 47, 4, 853-864, 2004 · Zbl 1074.76047
[43] Manzari, M. T., An explicit finite element algorithm for convective heat transfer problems, Int. J. Numer. Methods Heat Fluid Flow, 9, 8, 860-877, 1999 · Zbl 0955.76050
[44] El-Amrani, M.; Seaïd, M., Numerical simulation of natural and mixed convection flows by Galerkin-characteristic method, Int. J. Numer. Methods Fluids, 53, 12, 1819-1845, 2007 · Zbl 1370.76084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.