×

Scene flow estimation based on adaptive anisotropic total variation flow-driven method. (English) Zbl 1427.68343

Summary: Scene flow estimation based on disparity and optical flow is a challenging task. We present a novel method based on adaptive anisotropic total variation flow-driven method for scene flow estimation from a calibrated stereo image sequence. The basic idea is that diffusion of flow field in different directions has different rates, which can be used to calculate total variation and anisotropic diffusion automatically. Brightness consistency and gradient consistency constraint are employed to establish the data term, and adaptive anisotropic flow-driven penalty constraint is employed to establish the smoothness term. Similar to the optical flow estimation, there are also large displacement problems in the estimation of the scene flow, which is solved by introducing a hierarchical computing optimization. The proposed method is verified by using the synthetic dataset and the real scene image sequences. The experimental results show the effectiveness of the proposed algorithm.

MSC:

68U10 Computing methodologies for image processing
68T45 Machine vision and scene understanding
Full Text: DOI

References:

[1] Vedula, S.; Baker, S.; Rander, P.; Collins, R.; Kanade, T., Three-dimensional scene flow, Proceedings of the 7th IEEE International Conference on Computer Vision (ICCV ’99)
[2] Menze, M.; Geiger, A., Object scene flow for autonomous vehicles, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015 · doi:10.1109/CVPR.2015.7298925
[3] Lenz, P.; Ziegler, J.; Geiger, A.; Roser, M., Sparse scene flow segmentation for moving object detection in urban environments, Proceedings of the 2011 IEEE Intelligent Vehicles Symposium, IV ’11 · doi:10.1109/IVS.2011.5940558
[4] Waizenegger, W.; Feldmann, I.; Schreer, O.; Eisert, P., Scene flow constrained multi-prior patch-sweeping for real-time upper body 3D reconstruction, Proceedings of the 20th IEEE International Conference on Image Processing, ICIP ’13 · doi:10.1109/ICIP.2013.6738430
[5] Huguet, F.; Devernay, F., A variational method for scene flow estimation from stereo sequences, Proceedings of the IEEE 11th International Conference on Computer Vision, ICCV · doi:10.1109/ICCV.2007.4409000
[6] Basha, T.; Moses, Y.; Kiryati, N., Multi-view scene flow estimation: a view centered variational approach, International Journal of Computer Vision, 101, 1, 6-21 (2013) · Zbl 1259.68194 · doi:10.1007/s11263-012-0542-7
[7] Bruhn, A.; Weickert, J.; Kohlberger, T.; Schnörr, C., A multigrid platform for real-time motion computation with discontinuity-preserving variational methods, International Journal of Computer Vision, 70, 3, 257-277 (2006) · Zbl 1477.68336 · doi:10.1007/s11263-006-6616-7
[8] Horn, B. K. P.; Schunck, B. G., Determining optical flow, Artificial Intelligence, 17, 1-3, 185-203 (1981) · Zbl 1497.68488 · doi:10.1016/0004-3702(81)90024-2
[9] Alvarez, L.; Esclarin, J., A PDE model for computing the optical flow, Proceedings of the CEDYA XVI
[10] Perona, P.; Malik, J., Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 7, 629-639 (1990) · doi:10.1109/34.56205
[11] Nagel, H.-H.; Enkelmann, W., An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences, IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 5, 565-593 (1986) · doi:10.1109/TPAMI.1986.4767833
[12] Weickert, J.; Schnörr, C., A theoretical framework for convex regularizers in PDE-based computation of image motion, International Journal of Computer Vision, 45, 3, 245-264 (2001) · Zbl 0987.68600 · doi:10.1023/A:1013614317973
[13] Blomgren, P.; Chan, T. F., Color TV: Total variation methods for restoration of vector-valued images, IEEE Transactions on Image Processing, 7, 3, 304-309 (1998) · doi:10.1109/83.661180
[14] Li, R.; Sclaroff, R., Multi-scale 3D scene flow from binocular stereo sequences, Proceedings of the IEEE Workshop on Motion and Video Computing, MOTION 2005 · doi:10.1109/ACVMOT.2005.80
[15] Wedel, A.; Rabe, C.; Vaudrey, T.; Brox, T.; Franke, U.; Cremers, D., Efficient dense scene flow from sparse or dense stereo data, Computer Vision - ECCV 2008. Computer Vision - ECCV 2008, Lecture Notes in Computer Science, 5302, 739-751 (2008)
[16] Vogel, C.; Schindler, K.; Roth, S., Piecewise rigid scene flow, Proceedings of the 14th IEEE International Conference on Computer Vision, ICCV ’13 · doi:10.1109/ICCV.2013.174
[17] Rudin, L. I.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60, 1-4, 259-268 (1992) · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[18] Marquina, A.; Osher, S., A new time dependent model based on level set motion for nonlinear deblurring and noise removal, Proceedings of the International Conference on Scale-Space Theories in Computer Vision
[19] Brox, T.; Bruhn, A.; Papenberg, N.; Weickert, J., High accuracy optical flow estimation based on a theory for warping, Computer Vision—ECCV 2004. Computer Vision—ECCV 2004, Lecture Notes in Computer Science, 3024, 25-36 (2004), Berlin, Germany: Springer, Berlin, Germany · Zbl 1098.68736 · doi:10.1007/978-3-540-24673-2_3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.