×

Parameter estimation in image processing and computer vision. (English) Zbl 1269.65023

Bock, Hans Georg (ed.) et al., Model based parameter estimation. Theory and applications. Based on the workshop on parameter estimation, Heidelberg, Germany, 2009. Berlin: Springer (ISBN 978-3-642-30366-1/hbk; 978-3-642-30367-8/ebook). Contributions in Mathematical and Computational Sciences 4, 311-334 (2013).
Summary: Parameter estimation plays a dominant role in a wide number of image processing and computer vision tasks. In these settings, parameterizations can be as diverse as the application areas. Examples of such parameters are the entries of filter kernels optimized for a certain criterion, image features such as the velocity field, or part descriptors or compositions thereof. Subsequently, approaches for estimating these parameters encompass a wide range of techniques, often tuned to the application, the underlying data and viable assumptions. Here, an overview of parameter estimation in image processing and computer vision is given. Due to the wide and diverse areas in which parameter estimation is applicable, this review does not claim completeness. Based on selected key topics in image processing and computer vision, we discuss parameter estimation, its relevance, and give an overview over the techniques involved.
For the entire collection see [Zbl 1261.65002].

MSC:

65D19 Computational issues in computer and robotic vision
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
62F10 Point estimation
65C60 Computational problems in statistics (MSC2010)

Software:

SIFT
Full Text: DOI

References:

[1] Adelson, EH; Bergen, JR, Spatiotemporal energy models for the perception of motion, Journal of the Optical Society of America A, 2, 2, 284-299 (1985) · doi:10.1364/JOSAA.2.000284
[2] Agarwal, S.; Awan, A.; Roth, D., Learning to detect objects in images via a sparse, part-based representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 26, 11, 1475-1490 (2004) · doi:10.1109/TPAMI.2004.108
[3] Ambrosio, L.; Masnou, S., A direct variational approach to a problem arising in image reconstruction, Interfaces and Free Boundaries, 5, 63-81 (2003) · Zbl 1029.49037 · doi:10.4171/IFB/72
[4] Ambrosio, L.; Masnou, S., A direct variational approach to a problem arising in image reconstruction, Interfaces Free Bound, 5, 1, 63-81 (2003) · Zbl 1029.49037 · doi:10.4171/IFB/72
[5] Ambrosio, L.; Tortorelli, VM, On the approximation of free discontinuity problems, Boll Un Mat Ital B, 6, 7, 105-123 (1992) · Zbl 0776.49029
[6] Amit, Y.; Geman, D., A computational model for visual selection, Neural Computation, 11, 7, 1691-1715 (1998) · doi:10.1162/089976699300016197
[7] Anandan, P., A computational framework and an algorithm for the measurement of visual motion, International Journal of Computer Vision, 2, 283-319 (1989) · doi:10.1007/BF00158167
[8] Attneave, F., Some informational aspects of visual perception, Psychological Review, 61, 3, 183-193 (1954) · doi:10.1037/h0054663
[9] Ballester, C.; Bertalmio, M.; Caselles, V.; Sapiro, G.; Verdera, J., Filling-in by joint interpolation of vector fields and gray levels, IEEE Transactions on Image Processing, 10, 8, 1200-1211 (2001) · Zbl 1037.68771 · doi:10.1109/83.935036
[10] Ballester, C.; Caselles, V.; Verdera, J., Disocclusion by Joint Interpolation of Vector Fields and Gray Levels, Multiscale Modeling & Simulation, 2, 1, 80 (2003) · Zbl 1079.68634 · doi:10.1137/S1540345903422458
[11] Barron, JL; Fleet, DJ; Beauchemin, S., Performance of optical flow techniques, International Journal of Computer Vision, 12, 1, 43-77 (1994) · doi:10.1007/BF01420984
[12] Beauchemin, SS; Barron, JL, The computation of optical flow, ACM Computing Surveys, 27, 3, 433-467 (1995) · doi:10.1145/212094.212141
[13] Bellettini, G.; Dal Maso, G.; Paolini, M., Semicontinuity and relaxation properties of a curvature depending functional in 2d, Ann Scuola Norm Sup Pisa Cl Sci, 20, 247-297 (1993) · Zbl 0797.49013
[14] Berg, AC; Berg, TL; Malik, J., Shape matching and object recognition using low distortion correspondence, 26-33 (2005), In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, In
[15] Berkels, B.; Kondermann, C.; Garbe, C.; Rumpf, M., Reconstructing optical flow fields by motion inpainting, Energy Minimization Methods in Computer Vision and Pattern Recognition, Springer Verlag, vol LNCS, 5681, 388-400 (2009) · doi:10.1007/978-3-642-03641-5_29
[16] Bertalmio M, Sapiro G, Caselles V, Ballester C (2000) Image inpainting. In: Computer Graphics (SIGGRAPH ’00 Proceedings), pp 417-424
[17] Bertalmio, M.; Sapiro, G.; Randall, G., Morphing active contours, PAMI, 22, 7, 733-743 (2000) · doi:10.1109/34.865191
[18] Bertalmio M, Bertozzi A, Sapiro G (2001) Navier-Stokes, fluid dynamics, and image and video inpainting. Proceedings of the International Conference on Computer Vision and Pattern Recognition, IEEE I:355-362
[19] Bertalmio, M.; Vese, L.; Sapiro, G.; Osher, S., Simultaneous structure and texture image inpainting, IEEE Transactions on Image Processing, 12, 8, 882-889 (2003) · doi:10.1109/TIP.2003.815261
[20] Biederman, I., Recognition-by-components: A theory of human image understanding, Psychological Review, 94, 2, 115-147 (1987) · doi:10.1037/0033-295X.94.2.115
[21] Bigün J (1988) Local symmetry features in image processing. PhD thesis, Linköping University, Linköping, Sweden
[22] Borenstein E, Sharon E, Ullman S (2004) Combining top-down and bottom-up segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Workshop Percept Org in Comp Vision
[23] Bouchard, G.; Triggs, B., Hierarchical part-based visual object categorization, 710-715 (2005), In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, In
[24] Bredies, K.; Kunisch, K.; Pock, T., Total generalized variation, Siam Journal On Imaging Sciences, 3, 3, 492 (2010) · Zbl 1195.49025 · doi:10.1137/090769521
[25] Bruhn A, Weickert J, Feddern C, Kohlberger T, Schnörr C (2003) Real-time optic flow computation with variational methods. In: Petkov N, Westenberg M (eds) Computer Analysis of Images and Patterns, Lecture Notes in Computer Science, vol 2756, Springer Berlin/Heidelberg, pp 222-229
[26] Bruhn, A.; Weickert, J.; Schnörr, C., LucasKanade meets HornSchunck: Combining local and global optic flow methods, Int J Computer Vision, 61, 3, 211-231 (2005) · Zbl 1477.68337 · doi:10.1023/B:VISI.0000045324.43199.43
[27] Bruhn, A.; Weickert, J.; Kohlberger, T.; Schnörr, C., A multigrid platform for real-time motion computation with discontinuity-preserving variational methods, International Journal of Computer Vision, 70, 3, 257-277 (2006) · Zbl 1477.68336 · doi:10.1007/s11263-006-6616-7
[28] Burt, PJ; Adelson, EH, The laplacian pyramid as a compact image code, IEEE TransCOMM, 31, 532-540 (1983) · doi:10.1109/TCOM.1983.1095851
[29] Caselles, V.; Morel, JM; Sbert, C., An axiomatic approach to image interpolation, Image Processing, IEEE Transactions on, 7, 3, 376-386 (1998) · Zbl 0993.94504 · doi:10.1109/83.661188
[30] Chan, T.; Shen, J., Mathematical models for local nontexture inpaintings, SIAM Journal on Applied Mathematics, 62, 3, 1019-1043 (2001) · Zbl 1050.68157
[31] Chan, T.; Shen, J., Non-texture inpainting by curvature-driven diffusions (ccd), J Visual Comm Image Rep, 12, 436-449 (2001) · doi:10.1006/jvci.2001.0487
[32] Chan, T.; Shen, J., Mathematical models for local non-texture inpaintings, SIAM J Appl Math, 62, 1019-1043 (2002) · Zbl 1050.68157 · doi:10.1137/S0036139900368844
[33] Chan, TF; Tai, XC, Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients, Journal of Computational Physics, 193, 1, 40-66 (2003) · Zbl 1036.65086 · doi:10.1016/j.jcp.2003.08.003
[34] Chan, TF; Osher, S.; Shen, J., The digital tv filter and nonlinear denoising, IEEE Transactions on Image Processing, 10, 2, 231-241 (2001) · Zbl 1039.68778 · doi:10.1109/83.902288
[35] Chan, TF; Kang, SH; Shen, J., Euler’s elastica and curvature-based inpainting, SIAM Appl Math, 63, 2, 564-592 (2002) · Zbl 1028.68185
[36] Cohen I (93) Nonlinear variational method for optical flow computation. In: Proc. of the Eighth Scandinavian Conference on Image Analysis, vol 1, pp 523-530
[37] Cremers D, Schnörr C (2002) Motion competition: Variational integration of motion segmentation and shape regularization. In: Van Gool L (ed) Pattern Recognition - Proc. of the DAGM, Lecture Notes in Computer Science, vol 2449, pp 472-480 · Zbl 1017.68643
[38] Cremers, D.; Schnörr, C., Statistical shape knowledge in variational motion segmentation, Image and Vision Computing, 21, 77-86 (2003) · doi:10.1016/S0262-8856(02)00128-2
[39] Cremers, D.; Soatto, S., Motion competition: A variational approach to piecewise parametric motion segmentation, International Journal of Computer Vision, 62, 249-265 (2005) · Zbl 1477.68346 · doi:10.1007/s11263-005-4882-4
[40] Criminisi, A.; Pérez, P.; Toyama, K., Region filling and object removal by exemplar-based image inpainting, IEEE Transactions on Image Processing, 13, 9, 1200-1212 (2004) · doi:10.1109/TIP.2004.833105
[41] Csurka G, Dance CR, Fan L, Willamowski J, Bray C (2004) Visual categorization with bags of keypoints. In: ECCV, Workshop on Stat Learn in CV’04
[42] Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: CVPR, pp 886-893
[43] Epshtein B, Ullman S (2005) Feature hierarchies for object classification. In: ICCV, pp 220-227
[44] Esedoglu, S.; Jianhong, S., Digital inpainting based on the Mumford-Shah-Euler image model, Euro Jnl Appl Math, 13, 353-370 (2002) · Zbl 1017.94505
[45] Felzenszwalb, PF; Huttenlocher, DP, Pictorial structures for object recognition, IJCV, 61, 1, 55-79 (2005) · doi:10.1023/B:VISI.0000042934.15159.49
[46] Fennema, C.; Thompson, W., Velocity determination in scenes containing several moving objects, Computer Graphics and Image Processing, 9, 301-315 (1979) · doi:10.1016/0146-664X(79)90097-2
[47] Fergus R, Perona P, Zisserman A (2003) Object class recognition by unsupervised scale-invariant learning. In: CVPR, pp 264-271
[48] Ferrari, V.; Fevrier, L.; Jurie, F.; Schmid, C., Groups of adjacent contour segments for object detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 30, 1, 36-51 (2008) · doi:10.1109/TPAMI.2007.1144
[49] Fischler, MA; Elschlager, RA, The representation and matching of pictorial structures, IEEE Transactions on Computers c, -22, 1, 67-92 (1973)
[50] Fleet, DJ, Measurement of Image Velocity (1992), Dordrecht, The Netherlands: Kluwer Academic Publishers, Dordrecht, The Netherlands · Zbl 0758.68059 · doi:10.1007/978-1-4615-3648-2
[51] Fleet, DJ; Jepson, AD, Computation of component image velocity from local phase information, International Journal of Computer Vision, 5, 77-104 (1990) · doi:10.1007/BF00056772
[52] Fukushima, K., Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position, Biological Cybernetics, 36, 4, 193-202 (1980) · Zbl 0419.92009 · doi:10.1007/BF00344251
[53] Galvin B, McCane B, Novins K, Mason D, Mills S (1998) Recovering motion fields: an evaluation of eight optical flow algorithms. In: BMVC 98. Proceedings of the Ninth British Machine Vision Conference, vol 1, pp 195-204
[54] Geman, S.; Potter, DF; Chi, Z., Composition Systems, Quarterly of Applied Mathematics, 60, 707-736 (2002) · Zbl 1060.68122
[55] Glazer, F.; Reynolds, G.; Anandan, P., Scene matching through hierarchical correlation, 432-441 (1983), In: Proc. Conference on Computer Vision and Pattern Recognition, Washington, In
[56] Grauman K, Darrell T (2006) Pyramid match kernels: Discriminative classification with sets of image features. Tech. Rep. MIT-2006-020, MIT · Zbl 1222.68206
[57] Grimson, W.; Huttenlocher, D., On the sensitivity of the hough transform for object recognition, Pattern Analysis and Machine Intelligence, IEEE Transactions on, 12, 3, 255-274 (1990) · doi:10.1109/34.49052
[58] Grossauer H (2004) A combined pde and texture synthesis approach to inpainting. In: Pajdla T, Matas J (eds) Computer Vision - ECCV 2004, Lecture Notes in Computer Science, vol 3022, Springer-Verlag, pp 214-224, DOI 10.1007/978-3-540-24671-8∖_17 · Zbl 1098.68771
[59] Guichard, F., A morphological, affine, and galilean invariant scale-space for movies, IEEE Transactions on Image Processing, 7, 3, 444-456 (1998) · doi:10.1109/83.661194
[60] Haußecker H, Spies H (1999) Motion. In: Jähne B, Haußecker H, Geißler P (eds) Handbook of Computer Vision and Applications, vol 2, Academic Press, chap 13 · Zbl 0954.68147
[61] Heeger, D., Model for the extraction of image flow, Journal of the Optical Society of America, 4, 8, 1455-1471 (1987) · doi:10.1364/JOSAA.4.001455
[62] Heeger, DJ, Optical flow using spatiotemporal filters, International Journal of Computer Vision, 1, 279-302 (1988) · doi:10.1007/BF00133568
[63] Hinterberger W, Scherzer O, Schnörr C, Weickert J (2001) Analysis of optical flow models in the framework of calculus of variations. Tech. rep., Numerical Functional Analysis and Optimization, Revised version of Technical Report No. 8/2001, Computer Science Series, University of Mannheim, Germany · Zbl 1016.49002
[64] Hofmann, T., Unsupervised learning by probabilistic latent semantic analysis, Machine Learning, 42, 1, 177-196 (2001) · Zbl 0970.68130 · doi:10.1023/A:1007617005950
[65] Horn, B.; Schunk, B., Determining optical flow, Artificial Intelligence, 17, 185-204 (1981) · Zbl 1497.68488 · doi:10.1016/0004-3702(81)90024-2
[66] Hough P (1962) Method and means for recognizing complex patterns. U.S. Patent 3069654
[67] Jin, Y.; Geman, S., Context and hierarchy in a probabilistic image model, 2145-2152 (2006), In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, In
[68] Kass M, Witkin A, Terzopoulos D (1987) Snakes: Active contour models. In: ICCV87, pp 259-268
[69] Kondermann C, Kondermann D, Jähne B, CS Garbe
[70] Kondermann C, Mester R, Garbe C (2008) A statistical confidence measure for optical flows. In: Forsyth D, Torr P, Zisserman A (eds) Computer Vision - ECCV 2008, Springer Verlag, vol LNCS 5304, pp 290-301, DOI 10.1007/978-3-540-88690-7∖_22
[71] Lades, M.; Vorbrüggen, JC; Buhmann, JM; Lange, J.; von der Malsburg, C.; Würtz, RP; Konen, W., Distortion invariant object recognition in the dynamic link architecture, IEEE Transactions on Computers, 42, 300-311 (1993) · doi:10.1109/12.210173
[72] Lai, S.; Vemuri, B., Robust and efficient algorithms for optical flow computation, 455-460 (1995), In: Proc. of Int. Symp. Comp. Vis, In
[73] Laine, A.; Fan, J., Frame representations for texture segmentation, IEEE Transactions on Image Processing, 5, 5, 771-780 (1996)
[74] Lampert, CH; Blaschko, MB; Hofmann, T., Beyond sliding windows: Object localization by efficient subwindow search (2008), In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, In
[75] Lazebnik, S.; Schmid, C.; Ponce, J., Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories (2006), In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, In
[76] Lefébure, M.; Cohen, LD, Image registration, optical flow and local rigidity, Journal of Mathematical Imaging and Vision, 14, 131-147 (2001) · Zbl 0996.68229 · doi:10.1023/A:1011259231755
[77] Leibe B, Leonardis A, Schiele B (2004) Combined object categorization and segmentation with an implicit shape model. In: ECCV, Workshop Stat Learn’04
[78] Lenzen F, Schäfer H, CS Garbe (2011) Denoising Time-of-Flight data with adaptive total variation. In: Bebis G, Boyle R, Koracin D, Parvin B (eds) Advances in Visual Computing, ISVC 2011, vol LNCS 6938, pp 337-346, DOI 10.1007/978-3-642-24028-7∖_31
[79] Liapis, S. S.; Tziritas, G., Colour and texture segmentation using wavelet frame analysis, deterministic relaxation, and fast marching algorithms, Journal of Visual Communication and Image Representation, 15, 1-26 (2004) · doi:10.1016/S1047-3203(03)00025-7
[80] Little, JJ; Verri, A., Analysis of differential and matching methods for optical flow, 173-180 (1989), In: IEEE Workshop on Visual Motion, Irvine, CA, In
[81] Lowe, DG, Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision, 60, 2, 91-110 (2004) · doi:10.1023/B:VISI.0000029664.99615.94
[82] Lucas B, Kanade T (1981) An iterative image registration technique with an application to stereo vision. In: DARPA Image Understanding Workshop, pp 121-130
[83] Lucas BD (1984) Generalized image matching by the method of differences. PhD thesis, Carnegie-Mellon University, Pittsburgh, PA
[84] Luis Alvarez JS Joachim Weickert (1999) A scale-space approach to nonlocal optical flow calculations. Proceedings of the Second International Conference on Scale-Space Theories in Computer Vision pp 235-246
[85] Maji S, Malik J (2009) Object detection using a max-margin hough transform. In: CVPR
[86] Masnou, S., Disocclusion: A variational approach using level lines, IEEE Transactions on Image Processing, 11, 2, 68-76 (2002) · doi:10.1109/83.982815
[87] Masnou S, Morel J (1998) Level lines based disocclusion. In: Proc. of ICIP, vol 3, pp 259-263
[88] Masnou S, Morel JM (1998) Level lines based disocclusion. In: 5th IEEE International Conference on Image Processing (ICIP), Chicago, vol 3, pp 259-263
[89] Matsushita, Y.; Ofek, E.; Ge, W.; Tang, X.; Shum, HY, Full-frame video stabilization with motion inpainting, Pattern Analysis and Machine Intelligence, IEEE Transactions on, 28, 7, 1150-1163 (2006) · doi:10.1109/TPAMI.2006.141
[90] McCane, B.; Novins, K.; Crannitch, D.; Galvin, B., On benchmarking optical flow, Computer Vision and Image Understanding, 84, 1, 126-143 (2001) · Zbl 1021.68733 · doi:10.1006/cviu.2001.0930
[91] Mumford, D.; Shah, J., Optimal approximation by piecewise smooth functions and associated variational problems, Communications on Pure and Applied Mathematics, 42, 577-685 (1989) · Zbl 0691.49036 · doi:10.1002/cpa.3160420503
[92] Müller-Urbaniak S (1994) Eine Analyse des Zweischritt-[Theta]-Verfahrens zur Lösung der instationären Navier-Stokes-Gleichungen. Tech. rep.
[93] Nagel, HH, Displacement vectors derived from second-order intensity variations in image sequences, Computer Graphics and Image Processing, 21, 85-117 (1983) · doi:10.1016/S0734-189X(83)80030-9
[94] Nagel, HH; Enkelmann, W., An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences, IEEE Trans Pattern Anal Mach Intell, 8, 5, 565-593 (1986) · doi:10.1109/TPAMI.1986.4767833
[95] Nicolescu,M, Medioni,G (2002) 4d voting for matching, densification and segmentation into motion layers. In: Proceedings of the International Conference on Pattern Recognition, vol 3 · Zbl 1039.68694
[96] Nicolescu, M.; Medioni, G., Layered 4d representation and voting for grouping from motion, Pattern Analysis and Machine Intelligence, 25, 4, 492-501 (2003) · doi:10.1109/TPAMI.2003.1190574
[97] Ommer, B.; Buhmann, J., Learning the compositional nature of visual object categories for recognition, PAMI, 32, 3, 501-516 (2010) · doi:10.1109/TPAMI.2009.22
[98] Ommer, B.; Buhmann, JM, Object categorization by compositional graphical models, Energy Minimization Methods in Computer Vision and Pattern Recognition, LNCS, 3757, 235-250 (2005) · doi:10.1007/11585978_16
[99] Ommer B, Buhmann JM (2006) Learning compositional categorization models. In: ECCV, pp 316-329
[100] Ommer B, Malik J (2009) Multi-scale object detection by clustering lines. In: Computer Vision, 2009 IEEE 12th International Conference on, pp 484 -491, DOI 10.1109/ICCV.2009.5459200
[101] Ommer B, Sauter M, Buhmann JM (2006) Learning top-down grouping of compositional hierarchies for recognition. In: CVPR, Workshop POCV
[102] Opelt A, Pinz A, Zisserman A (2006) Incremental learning of object detectors using a visual shape alphabet. In: CVPR, pp 3-10
[103] Oppenheim AV, Schafer RW (2009) Discrete-Time Signal Processing, 3rd edn. Prentice Hall · Zbl 0676.42001
[104] Petrovic, A. E.; Vanderheynst, P., Multiresolution segmentation of natural images: From linear to nonlinear scale-space representation, IEEE Transactions on Image Processing, 13, 8, 1104-1114 (2004) · doi:10.1109/TIP.2004.828431
[105] Pietikäinen, M.; Rosenfeld, A., Image segmentation by texture using pyramid node linking, Systems, Man and Cybernetics, IEEE Transactions on, 11, 12, 822-825 (1981) · doi:10.1109/TSMC.1981.4308623
[106] Preußer, Droske M, Garbe CS, Telea A, Rumpf M (2007) A phase field method for joint denoising, edge detection and motion estimation. SIAM Appl Math, 68(3): 599-618, DOI 10.1137/060677409 · Zbl 1513.94010
[107] Proakis JG, Manolakis DK (2006) Digital Signal Processing, 4th edn. Prentice Hall
[108] Schnörr, C., Computation of discontinuous optical flow by domain decomposition and shape optimization, International Journal Computer Vision, 8, 2, 153-165 (1992) · doi:10.1007/BF00127172
[109] Sivic, J.; Russell, BC; Efros, AA; Zisserman, A.; Freeman, WT, Discovering objects and their localization in images (2005), In: ICCV, In
[110] Spies H, Garbe CS (2002) Dense parameter fields from total least squares. In: Van Gool L (ed) Pattern Recognition, Springer-Verlag, Zurich, CH, Lecture Notes in Computer Science, vol LNCS 2449, pp 379-386 · Zbl 1017.68888
[111] Strehl,A, Aggarwal,JK (2000) A new Bayesian relaxation framework for the estimation and segmentation of multiple motions. In: Proceedings of the 4th IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI 2000), 2-4 April 2000, Austin, Texas, USA, IEEE, pp 21-25, URL citeseer.ist.psu.edu/strehl00new.html
[112] Sudderth, EB; Torralba, AB; Freeman, WT; Willsky, AS, Learning hierarchical models of scenes, objects, and parts (2005), In: ICCV, In
[113] Tan L (2007) Digital Signal Processing: Fundamentals and Applications. Academic Press
[114] Telea, A.; Preusser, T.; Garbe, C.; Droske, M.; Rumpf, M., A variational approach to joint denoising, edge detection and motion estimation, In: Proc. DAGM, 2006, 525-353 (2006)
[115] Tretiak O, Pastor L (1984) Velocity estimation from image sequences with second order differential operators. In: Proc. 7th International Conference on Pattern Recognition, pp 20-22
[116] Unser, M., Texture classification and segmentation using wavelet frames, IEEE Transaction on Image Processing, 11, 1549-1560 (1995) · doi:10.1109/83.469936
[117] Vidal, R.; Ma, Y., A unified algebraic approach to 2-d and 3-d motion segmentation, In: ECCV, 1, 1-15 (2004) · Zbl 1098.68881
[118] Viola PA, Jones MJ (2001) Rapid object detection using a boosted cascade of simple features. In: CVPR, pp 511-518
[119] Wang, JYA; Adelson, EH; Wang, JYA; Adelson, EH, Layered representation for motion analysis, Proceedings CVPR’93, 361-366 (1993), NY, Washington, DC: New York City, NY, Washington, DC
[120] Wang, JYA; Adelson, EH, Representating moving images with layers, IEEE Transaction on Image Processing, 3, 5, 625-638 (1994) · doi:10.1109/83.334981
[121] Wang, JYA; Adelson, EH, Representing moving images with layers, The IEEE Transactions on Image Processing Special Issue: Image Sequence Compression, 3, 5, 625-638 (1994) · doi:10.1109/83.334981
[122] Waxman AM, Wu J, Bergholm F (1988) Convected activation profiles and receptive fields for real time measurement of short range visual motion. In: Proc. Conf. Comput. Vis. Patt. Recog, Ann Arbor, pp 771-723
[123] Weickert, J.; Schnörr, C., A theoretical framework for convex regularizers in PDE-based computation of image motion, Int J Computer Vision, 45, 3, 245-264 (2001) · Zbl 0987.68600 · doi:10.1023/A:1013614317973
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.