×

Mapping class group and U(1) Chern-Simons theory on closed orientable surfaces. (English) Zbl 1260.81227

Summary: U(1) Chern-Simons theory is quantized canonically on manifolds of the form \(M = \mathbb{R}\times \Sigma\), where \(\Sigma\) is a closed orientable surface. In particular, we investigate the role of the mapping class group of \(\Sigma\) in the process of quantization. We show that, by requiring the quantum states to form representation of the holonomy group and the large gauge transformation group, both of which are deformed by quantum effect, the mapping class group can be consistently represented, provided the Chern-Simons parameter \(k\) satisfies an interesting quantization condition. The representations of all the discrete groups are unique, up to an arbitrary sub-representation of the mapping class group. Also, we find a \(k \leftrightarrow 1/k\) duality of the representations.

MSC:

81T70 Quantization in field theory; cohomological methods
58J28 Eta-invariants, Chern-Simons invariants
81Q70 Differential geometric methods, including holonomy, Berry and Hannay phases, Aharonov-Bohm effect, etc. in quantum theory
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems

References:

[1] DOI: 10.1007/BF01217730 · Zbl 0667.57005 · doi:10.1007/BF01217730
[2] DOI: 10.1016/0370-2693(89)90897-6 · doi:10.1016/0370-2693(89)90897-6
[3] Axelrod S., J. Differ. Geom. 33 pp 787–
[4] DOI: 10.1016/0550-3213(89)90436-7 · doi:10.1016/0550-3213(89)90436-7
[5] DOI: 10.1142/S0217751X90000453 · doi:10.1142/S0217751X90000453
[6] DOI: 10.1007/BF02099431 · Zbl 0842.58037 · doi:10.1007/BF02099431
[7] DOI: 10.1016/j.nuclphysb.2004.10.057 · Zbl 1137.53349 · doi:10.1016/j.nuclphysb.2004.10.057
[8] DOI: 10.1016/0370-2693(89)90920-9 · doi:10.1016/0370-2693(89)90920-9
[9] DOI: 10.1063/1.532333 · Zbl 0930.53057 · doi:10.1063/1.532333
[10] DOI: 10.1016/0370-2693(90)91482-Q · doi:10.1016/0370-2693(90)91482-Q
[11] DOI: 10.1103/PhysRevD.53.3147 · doi:10.1103/PhysRevD.53.3147
[12] DOI: 10.1088/0264-9381/16/8/303 · Zbl 0941.83034 · doi:10.1088/0264-9381/16/8/303
[13] Birman J. S., Ann. Math. Stud. 66 pp 81–
[14] DOI: 10.1007/BF02774014 · Zbl 0533.57002 · doi:10.1007/BF02774014
[15] DOI: 10.1016/0550-3213(88)90143-5 · Zbl 1258.83032 · doi:10.1016/0550-3213(88)90143-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.