×

Generalization of approximate partial Noether approach in phase space. (English) Zbl 1373.70016

Summary: The approximate partial Noether theorem proposed earlier for the ordinary differential equations (ODEs) [I. Naeem and F. M. Mahomed, Nonlinear Dyn. 57, No. 1–2, 303–311 (2009; Zbl 1176.70031)] is generalized in phase space for the perturbed Hamiltonian-type systems. The notion of approximate partial Hamiltonian is developed. An approximate partial Hamiltonian gives rise to an approximate Hamiltonian-type perturbed dynamical system of first-order ODEs. An approximate Legendre-type transformation connects the approximate partial Lagrangian and what we term as approximate partial Hamiltonian. The formulas for approximate partial Hamiltonian operators determining equations and first integrals are provided explicitly. We have explained our approach with the help of simple illustrative example. Then, it is applied to establish the approximate first integrals, reductions and exact solutions of two perturbed cubically coupled Duffing-Van der Pol oscillators. Both resonant and nonresonant cases are considered.

MSC:

70H33 Symmetries and conservation laws, reverse symmetries, invariant manifolds and their bifurcations, reduction for problems in Hamiltonian and Lagrangian mechanics
70H03 Lagrange’s equations
70K60 General perturbation schemes for nonlinear problems in mechanics
34D10 Perturbations of ordinary differential equations
34C14 Symmetries, invariants of ordinary differential equations

Citations:

Zbl 1176.70031
Full Text: DOI

References:

[1] Olver, P.J.: Applications of Lie Group to Differential Equations. Berlin (1986) · Zbl 0588.22001
[2] Noether, E.: Invariante Variationsprobleme. Nachr. König. Gesell. Wissen., Göttingen, Math.-Phys. Kl., Heft 2, 235-257 (1918). (English translation in Transport Theory and Statistical Physics 1(3) 1971 186-207.) · JFM 46.0770.01
[3] Baikov, V.A., Gazizov, R.K., Ibragimov, N.H.: Approximate symmetries. Math. Sbornik, 136 (178), No. 3: 435450, 1988. English transl. Math. USSR Sb 64, 427-441 (1989) · Zbl 0683.35004
[4] Baikov, V.A., Gazizov, R.K., Ibragimov, N.K.: Perturbation methods in group analysis. J. Soviet. Math. 55(1), 1450-1490 (1991) · Zbl 0759.35003 · doi:10.1007/BF01097534
[5] Baikov, V.A., Gazizov, R.K., Ibragimov, N.H., Mahomed, F.M.: Closed orbits and their stable symmetries. J. Math. Phys. 35(12), 6525-6535 (1994) · Zbl 0826.70007 · doi:10.1063/1.530689
[6] Govinder, K.S., Heil, T.G., Uzer, T.: Approximate Noether symmetries. Phys. Lett. A. 240(3), 127-131 (1998) · Zbl 0945.70520 · doi:10.1016/S0375-9601(98)00067-X
[7] Feroze, T., Kara, A.H.: Group theoretic methods for approximate invariants and Lagrangians for some classes of \[y^{\prime \prime }+\varepsilon F (t) y^{\prime }+ y= f (y, y^{\prime })\] y″+εF(t)y′+y=f(y,y′). Int. J. Nonlinear Mech. 37(2), 275-280 (2002) · Zbl 1116.34318 · doi:10.1016/S0020-7462(00)00111-6
[8] Kara, A.H., Mahomed, F.M., Naeem, I., Wafo Soh, C.: Partial Noether operators and first integrals via partial Lagrangians. Math. Method. Appl. Sci. 30(16), 2079-2089 (2007) · Zbl 1130.70012 · doi:10.1002/mma.939
[9] Naeem, I., Mahomed, F.M.: Approximate partial Noether operators and first integrals for coupled nonlinear oscillators. Nonlinear Dyn. 57(1-2), 303-311 (2009) · Zbl 1176.70031 · doi:10.1007/s11071-008-9441-4
[10] Naeem, I., Mahomed, F.M.: Approximate first integrals for a system of two coupled van der Pol oscillators with linear diffusive coupling. Math. Comput. Appl. 15(4), 720 (2010) · Zbl 1285.70007
[11] Naz, R.: Approximate partial Noether operators and first integrals for cubically coupled nonlinear Duffing oscillators subject to a periodically driven force. J. Math. Anal. Appl. 380(1), 289-298 (2011) · Zbl 1344.70034 · doi:10.1016/j.jmaa.2011.02.028
[12] Kara, A.H., Mahomed, F.M., Ünal, G.: Approximate symmetries and conservation laws with applications. Int. J. Theor. Phys. 38(9), 2389-2399 (1999) · Zbl 0989.37076 · doi:10.1023/A:1026684004127
[13] Johnpillai, A.G., Kara, A.H.: Variational formulation of approximate symmetries and conservation laws. Int. J. Theor. Phys. 40(8), 1501-1509 (2001) · Zbl 1006.81035 · doi:10.1023/A:1017561629174
[14] Gan, Y., Qu, C.: Approximate conservation laws of perturbed partial differential equations. Nonlinear Dyn. 61(1-2), 217-228 (2010) · Zbl 1204.35118 · doi:10.1007/s11071-009-9643-4
[15] Johnpillai, A.G., Kara, A.H., Mahomed, F.M.: Approximate Noether-type symmetries and conservation laws via partial Lagrangians for PDEs with a small parameter. J. Comput. Appl. Math. 223(1), 508-518 (2009) · Zbl 1158.35306 · doi:10.1016/j.cam.2008.01.020
[16] Kara, A.H., Mahomed, F.M.: Noether-type symmetries and conservation laws via partial Lagrangians. Nonlinear Dyn. 45(3-4), 367-383 (2006) · Zbl 1121.70014 · doi:10.1007/s11071-005-9013-9
[17] Naz, R., Mahomed, F.M., Mason, D.P.: Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics. Appl. Math. Comput. 205(1), 212-230 (2008) · Zbl 1153.76051
[18] Naz, R., Freire, I.L., Naeem, I.: Comparison of Different Approaches to Construct First Integrals for Ordinary Differential Equations. Abstr. Appl. Anal. (2014). doi:10.1155/2014/978636 · Zbl 1453.34021
[19] Wang, P.: Perturbation to symmetry and adiabatic invariants of discrete nonholonomic nonconservative mechanical system. Nonlinear Dyn. 68, 53-62 (2012) · Zbl 1315.70009 · doi:10.1007/s11071-011-0203-3
[20] de Lagrange, J.L.: Méchanique analitique. Paris: Desaint 512 p.; in 8.; DCC. 4.403, 1 (1788) · Zbl 1130.70012
[21] Euler, L.: Discovery of a new principle of mechanics. Mémoires de lAcademie Royale des science (1750) · Zbl 1285.70007
[22] Pontryagin, L.S.: Mathematical Theory of Optimal Processes. CRC Press, Boca Raton (1987) · Zbl 0629.26002
[23] Legendre, A.M.: Réflexions sur differéntes manières de démostrer la théorie des paralléles ou le théorème sur la somme des trois angles du triangle. Mém. del Acad. des Sci. de Paris 13, 213-220 (1833)
[24] Arnol’d, V.I.: Mathematical methods of classical mechanics. Springer, New York Mémoires de lAcademie des Sciences de Paris 13, 213-220 (1989) · Zbl 0826.70007
[25] Dorodnitsyn, V., Kozlov, R.: Invariance and first integrals of continuous and discrete Hamiltonian equations. J. Eng. Math. 66, 253-270 (2010) · Zbl 1188.70054 · doi:10.1007/s10665-009-9312-0
[26] Naz, R., Mahomed, F.M., Chaudhry, A.: A partial Lagrangian method for dynamical systems. Nonlinear Dyn. (2016). doi:10.1007/s11071-016-2605-8 · Zbl 1354.37099
[27] Naz, R., Mahomed, F.M., Chaudhry, A.: A partial Hamiltonian approach for current value Hamiltonian systems. Commun. Nonlinear Sci. Numer. Simul. 19(10), 3600-3610 (2014) · Zbl 1470.37086 · doi:10.1016/j.cnsns.2014.03.023
[28] Naz, R., Chaudhry, A., Mahomed, F.M.: Closed-form solutions for the Lucas Uzawa model of economic growth via the partial Hamiltonian approach. Commun. Nonlinear Sci. Numer. Simul. 30(1), 299-306 (2016) · Zbl 1489.91162 · doi:10.1016/j.cnsns.2015.06.033
[29] Ünal, G.: Approximate generalized symmetries, normal forms and approximate first integrals. Phys. Lett. A. 269(1), 13-30 (2000) · Zbl 1115.37341 · doi:10.1016/S0375-9601(00)00220-6
[30] Ünal, G.: Approximate first integrals of weakly nonlinear, damped-driven oscillators with one degree of freedom. Nonlinear Dyn. 26(4), 309-329 (2001) · Zbl 1006.70021 · doi:10.1023/A:1013331523696
[31] Ünal, G., Gorali, G.: Approximate first integrals of a galaxy model. Nonlinear Dyn. 28(2), 195-211 (2002) · Zbl 1018.70008 · doi:10.1023/A:1015004915682
[32] Rajasekar, S., Murali, K.: Resonance behaviour and jump phenomenon in a two coupled Duffing-Van der Pol oscillators. Chaos Solitons. Frac. 19(4), 925-934 (2004) · Zbl 1058.34048 · doi:10.1016/S0960-0779(03)00277-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.