×

On Caffarelli-Kohn-Nirenberg inequalities for block-radial functions. (English) Zbl 1359.46037

Summary: The paper provides weighted Sobolev inequalities of the Caffarelli-Kohn-Nirenberg type for functions with multi-radial symmetry. An elementary example of such inequality is the following inequality of Hardy type for functions \(u=u(r_1(x),r_2(x))\), where \(r_1(x)=\sqrt{x_1^2+x_2^2}\) and \(r_2(x)=\sqrt{x_3^2+x_4^2}\) from the subspace \(\dot{H}_{(2,2)}^{1,3} (\mathbb R^4)\) of the Sobolev space \(\dot {H}^{1,3}(\mathbb R^4)\), radially symmetric in variables \((x_1, x_2)\) and in variables \((x_3,x_4)\): \[ \int_{\mathbb R^4}\frac{u^2}{r_1(x)r_2(x)}\mathrm{d}x \leq C\int_{\mathbb R^4}|\nabla u|^2 \mathrm{d}x, \] Similarly to the previously studied radial case, the range of parameters in CKN inequalities can be extended, sometimes to infinity, providing a pointwise estimate similar to the radial estimate in [W. A. Strauss, Commun. Math. Phys. 55, 149–162 (1977; Zbl 0356.35028)]. Furthermore, the “multi-radial” weights are a stronger singularity than radial weights of the same homogeneity, e.g. \(\frac{1}{r_1(x)r_2(x)}\geq \frac{1}{2| x|^2}\).

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
46B50 Compactness in Banach (or normed) spaces
46N20 Applications of functional analysis to differential and integral equations
26D10 Inequalities involving derivatives and differential and integral operators

Citations:

Zbl 0356.35028

References:

[1] Abatangelo, L., Terracini, S.: Solutions to nonlinear Schrdinger equations with singular electromagnetic potential and critical exponent. J. Fixed Point Theory Appl. 10, 147-180 (2011) · Zbl 1273.35247 · doi:10.1007/s11784-011-0053-0
[2] Abatangelo, L., Terracini, S.: A note on the complete rotational invariance of biradial solutions to semilinear elliptic equations. Adv. Nonlinear Stud. 11, 233-245 (2011) · Zbl 1218.35105 · doi:10.1515/ans-2011-0201
[3] Aubin, T.h.: Espaces de Sobolev sur les varietes riemanniennes. Bull. Sci. Math. 100(2), 149-173 (1976) · Zbl 0328.46030
[4] Cho, Y., Ozawa, T.: Sobolev inequalities with symmetry. Commun. Contemp. Math. 11, 355-365 (2009) · Zbl 1184.46035 · doi:10.1142/S0219199709003399
[5] Caffarelli, L.A., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights. Composito Math. 53, 259-275 (1984) · Zbl 0563.46024
[6] Davis, E.: Spectral Theory and Differential Operators. Cambridge University Press, Cambridge (1995) · Zbl 1184.46035
[7] de Figueiredo, D.G., Moreira, E., Miyagaki, O.H.: Sobolev spaces of symmetric functions and applications. J. Func. Anal. 261, 3735-3770 (2011) · Zbl 1232.46032 · doi:10.1016/j.jfa.2011.08.016
[8] De Napoli, P.L., Drelichman, I., Duran, R.G.: Improved Caffarelli-Kohn-Nirenberg and trace inequalities for radial functions. Commun. Pure Appl. Anal. 11, 1629-1642 (2012) · Zbl 1264.26020 · doi:10.3934/cpaa.2012.11.1629
[9] Ding, Y.: Non-radial solutions of semilinear elliptic equations. Math. Acta Sci. 10, 229-239 (1990) · Zbl 0713.35034
[10] Kuzin, I.: Existence theorems for nonlinear elliptic problems in RN in the class of block-radial functions. Differential Equations 30, 637-646 (1994) · Zbl 0823.35048
[11] Kuzin, I., Pohozaev, S.: Entire Solutions of Semilinear Elliptic Equations. Birkhäuser, Basel (1997) · Zbl 0882.35003
[12] Lenz, D., Stollmann, P., Veselic, I.: The Allegretto-Piepenbrink theorem for strongly local Dirichlet forms. Documenta Mathematica 14, 167-189 (2009) · Zbl 1172.35045
[13] Leoni, G.: A first Course in Sobolev spaces. Graduate Studies in Mathematics, 105. American Mathematicas Society, Providence, Rhode Island (2009) · Zbl 1180.46001
[14] Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193-248 (1934) · JFM 60.0726.05 · doi:10.1007/BF02547354
[15] Lions, P.-L.: Symétrie et compacité dans les espaces de Sobolev. J. Funct. Anal. 49, 315-334 (1982) · Zbl 0501.46032 · doi:10.1016/0022-1236(82)90072-6
[16] Maz’ya, V.: Sobolev spaces with applications to elliptic partial differential equations. Second, revised and augmented edition. Springer, Heidelberg (2011) · Zbl 1184.46035
[17] Moss, W.F., Piepenbrink, J.: Positive solutions of elliptic equations. Pacific J. Math 75, 219-226 (1978) · Zbl 0381.35026 · doi:10.2140/pjm.1978.75.219
[18] Pinchover, Y.: Topics in the theory of positive solutions of second-order elliptic and parabolic partial differential equations. In: Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday, 329-355, Proc. Sympos. Pure Math., 76, Part 1. Amer. Math. Soc., Providence, RI (2007) · Zbl 1138.35008
[19] Pinchover, Y., Tintarev, K.: A ground state alternative for singular Schrdinger operators. J. Func. Anal. 230, 65-77 (2006) · Zbl 1086.35025 · doi:10.1016/j.jfa.2005.05.015
[20] Sickel, W., Skrzypczak, L.: On the interplay of regularity and decay in case of radial functions II. Homogeneous spaces. J. Fourier Anal. App. 18, 548-582 (2012) · Zbl 1254.46039 · doi:10.1007/s00041-011-9205-2
[21] Sickel, W., Skrzypczak, L., Vybiral, J.: On the interplay of regularity and decay in case of radial functions I. Inhomogeneous spaces. Comm. Contemp. Math. 14, 1250005 (2012). 60 pages · Zbl 1247.46031 · doi:10.1142/S0219199712500058
[22] Skrzypczak, L.: Rotation invariant subspaces of Besov and Triebel-Lizorkin space: compactness of embeddings, smoothness and decay of functions. Rev. Mat. Iberoamericana 18, 267-299 (2002) · Zbl 1036.46028 · doi:10.4171/RMI/319
[23] Skrzypczak, L., Tintarev, C.: A geometric criterion for compactness of invariant subspaces. Arch. Math. 101, 259-268 (2013) · Zbl 1287.46026 · doi:10.1007/s00013-013-0554-8
[24] Solimini, S.: A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev space. Ann. Inst. H. Poincaré, Section C 12, 319-337 (1995) · Zbl 0837.46025
[25] Strauss, W.: Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55, 149-162 (1977) · Zbl 0356.35028 · doi:10.1007/BF01626517
[26] Takac, P., Tintarev, K.: Generalized minimizer solutions for equations with the p-Laplacian and a potential term. Proc. Royal Soc. Edinburgh Sect. A 138, 201-221 (2008) · Zbl 1133.49016 · doi:10.1017/S0308210506000904
[27] Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353-372 (1976) · Zbl 0353.46018 · doi:10.1007/BF02418013
[28] Tintarev, K., Fieseler, K.-H.: Concentration Compactness: Functional-Analytic Grounds and Applications. Imperial College Press (2007) · Zbl 1118.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.