×

Nontrivial solutions for a \((p, q)\)-type critical Choquard equation on the Heisenberg group. (English) Zbl 1512.35313

Summary: In this paper, we consider a critical \((p, q)\) equation on the Heisenberg group of the following form: \[ -\Delta_{H,p}u-\Delta_{H,q}u+V(\xi)(|u|^{p-2}u+|u|^{q-2}u)=\mu \int \limits_{{\mathbb{H}}^n} \frac{F(\xi ,u)}{|\eta^{-1}\xi |^{\lambda}}{\text{d}}\xi f(\eta ,u)+|u|^{q^*-2}u, \] where the operator \(-\Delta_{H,\boldsymbol{\wp}}\varphi ={\text{div}}_H(|D_H\varphi |_H^{\boldsymbol{\wp}-2}D_H\varphi)\), with \(\boldsymbol{\wp}\in \{p,q\}\), is the proverbial horizontal \(\boldsymbol{\wp}\)-Laplacian on the Heisenberg group, \(1< p<\frac{(2Q-\lambda)}{2Q}q< q < Q\), \(q^* = qQ/(Q-q)\) is the critical exponent, and \(Q = 2n + 2\) is the homogeneous dimension of \({\mathbb{H}}^n\), \(\mu\) and \(\lambda\) are some real parameters. Under the appropriate assumptions of potential functions \(V\) and \(f\), the existence of entire solutions to the above equation on the Heisenberg group is obtained by using the mountain pass theorem and the concentration compactness principle. The results presented here extend or complete recent papers and are new to critical equations involving \((p, q)\)-Laplacian operators and convolution terms on Heisenberg group.

MSC:

35J62 Quasilinear elliptic equations
35R03 PDEs on Heisenberg groups, Lie groups, Carnot groups, etc.
35B33 Critical exponents in context of PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35J20 Variational methods for second-order elliptic equations
Full Text: DOI

References:

[1] Ambrosio, V.; Isernia, T., A multiplicity result for a \((p, q)\)-Schrödinger-Kirchhoff-type equation, Annali di Matematica Pura ed Applicata., 201, 943-984 (2022) · Zbl 1486.35200 · doi:10.1007/s10231-021-01145-y
[2] Aberqi, A.; Benslimane, O.; Elmassoudi, M.; Ragusa, MA, Nonnegative solution of a class of double phase problems with logarithmic nonlinearity, Bound. Value Probl., 1, 1-13 (2022) · Zbl 1500.35179
[3] Autuori, G.; Pucci, P., Existence of entire solutions for a class of quasilinear elliptic equations, NoDEA, Nonlinear Differ. Equ. Appl., 20, 977-1009 (2013) · Zbl 1273.35137 · doi:10.1007/s00030-012-0193-y
[4] Ambrosio, V.; Radulescu, V., Fractional double-phase patterns: concentration and multiplicity of solutions, J. Math. Pures Appl., 142, 101-145 (2020) · Zbl 1448.35538 · doi:10.1016/j.matpur.2020.08.011
[5] Benslimane, O.; Aberqi, A.; Bennouna, J., Existence and uniqueness of weak Solution of \(p(x)\)-Laplacian in Sobolev spaces with variable exponents in complete manifolds, Filomat, 35, 5, 1453-1463 (2021) · doi:10.2298/FIL2105453B
[6] Bordoni, S.; Filippucci, R.; Pucci, P., Existence problems on Heisenberg groups involving Hardy and critical terms, J. Geom. Anal., 30, 1887-1917 (2020) · Zbl 1473.35616 · doi:10.1007/s12220-019-00295-z
[7] Chen, C., Multiple solutions for a class of quasilinear Schr \(\ddot{o}\) dinger equations in \({\mathbb{R} }^N \), J. Math. Phys., 56 (2015) · Zbl 1321.35207 · doi:10.1063/1.4927254
[8] Chen, C.; Liu, L., Infinitely many solutions for p-biharmonic equation with general potential and concave-convex nonlinearity in \({\mathbb{R} }^N \), Bound. Value Probl., 2016, 1-9 (2016) · Zbl 1332.35130
[9] Chen, C.; Song, H.; Yan, Q., Infinitely many solutions for quasilinear Schrödinger equation with critical exponential growth in \({\mathbb{R} }^N \), J. Math. Anal. Appl., 439, 575-593 (2016) · Zbl 1339.35295 · doi:10.1016/j.jmaa.2016.03.002
[10] d’Avenia, P.; Ji, C., Multiplicity and concentration results for a magnetic Schr \(\ddot{o}\) dinger equation with exponential critical growth in \({\mathbb{R} }^2 \), Int. Math. Res. Not. IMRN, 2022, 862-897 (2022) · Zbl 1485.35201 · doi:10.1093/imrn/rnaa074
[11] Figueiredo, GM, Existence of positive solutions for a class of \(p,q\) elliptic problems with critical growth on \({\mathbb{H} }^n \), J. Math. Anal. Appl., 378, 507-518 (2011) · Zbl 1211.35114 · doi:10.1016/j.jmaa.2011.02.017
[12] Fiscella, A.; Pucci, P., \((p, q)\) systems with critical terms in \({\mathbb{R} }^N \), Nonlinear Anal., 177, 454-479 (2018) · Zbl 1407.35078 · doi:10.1016/j.na.2018.03.012
[13] Folland, GB; Stein, EM, Estimates for the \(\partial\) b complex and analysis on the Heisenberg group, Commun. Pure Appl. Math., 27, 429-522 (1974) · Zbl 0293.35012 · doi:10.1002/cpa.3160270403
[14] Folland, GB; Stein, EM, Estimates for the \({\overline{\partial }}_b\) complex and analysis on the Heisenberg group, Commun. Pure Appl. Math., 27, 429-522 (1974) · Zbl 0293.35012 · doi:10.1002/cpa.3160270403
[15] Garofalo, N.; Lanconelli, E., Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation, Ann. Inst. Fourier., 40, 313-356 (1990) · Zbl 0694.22003 · doi:10.5802/aif.1215
[16] Garofalo, N.; Nhieu, DM, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Commun. Pure Appl. Math., 49, 1081-1144 (1996) · Zbl 0880.35032 · doi:10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO;2-A
[17] Hörmander, L., Hypoelliptic second order differential equations, Acta Math., 119, 147-171 (1967) · Zbl 0156.10701 · doi:10.1007/BF02392081
[18] Ivanov, SP; Vassilev, DN, Extremals for the Sobolev Inequality and the Quaternionic Contact Yamabe Problem (2011), Hackensack: World Scientific Publishing Co. Pte. Ltd., Hackensack · Zbl 1228.53001 · doi:10.1142/7647
[19] Ji, C., R \(\breve{a}\) dulescu, V.D.: Concentration phenomena for nonlinear magnetic Schr \(\ddot{o}\) dinger equations with critical growth. Israel J. Math. 241, 465-500 (2021) · Zbl 1465.35140
[20] Ji, C., R \(\breve{a}\) dulescu, V.D.: Multi-bump solutions for the nonlinear magnetic Choquard equation with deepening potential well. J Differ. Equ. 306, 251-279 (2022) · Zbl 1480.35190
[21] Kaniuth, E., A Course in Commutative Banach Algebras (2009), New York: Springer Science and Business Media, New York · Zbl 1190.46001 · doi:10.1007/978-0-387-72476-8
[22] Lions, PL, The concentration compactness principle in the calculus of variations. The limit case Part2, Rev. Mat. Iberoam., 1, 45-121 (1985) · Zbl 0704.49006 · doi:10.4171/RMI/12
[23] Lions, PL, The concentration compactness principle in the calculus of variations The limit case Part 1, Rev. Mat. Iberoam., 1, 1, 145-201 (1985) · Zbl 0704.49005 · doi:10.4171/RMI/6
[24] Li, X.; Zhang, XS, The equivalence of operator norm between the Hardy-Littlewood Maximal function and truncated maximal function on the Heisenberg group, J. Funct. Spaces, 2021, 1-9 (2021) · Zbl 1510.42030
[25] Marcellini, P., On the definition and the lower semicontinuity of certain quasiconvex integrals, Ann. Inst. H. Poincaré Anal. Non Linéaire., 3, 391-409 (1986) · Zbl 0609.49009 · doi:10.1016/s0294-1449(16)30379-1
[26] Marcellini, P., Regularity and existence of solutions of elliptic equations with p, q-growth conditions, J. Differ. Equ., 90, 1-30 (1991) · Zbl 0724.35043 · doi:10.1016/0022-0396(91)90158-6
[27] Papageorgiou, NS; Qin, D.; Rădulescu, V., Nonlinear eigenvalue problems for the \((p, q)\)-Laplacian, Bull. Sci. Math., 172 (2021) · Zbl 1479.35490 · doi:10.1016/j.bulsci.2021.103039
[28] Papageorgiou, NS; Radulescu, V., \(( p,2)\)-equations asymmetric at both zero and infinity, Adv. Nonlinear Anal., 7, 327-351 (2018) · Zbl 1401.35085 · doi:10.1515/anona-2017-0195
[29] Pucci, P.; Temperini, L., Existence for \((p, q)\) critical systems in the Heisenberg group, Adv. Nonlinear Anal., 9, 895-922 (2020) · Zbl 1431.35017 · doi:10.1515/anona-2020-0032
[30] Pucci, P.; Temperini, L., Existence for fractional \((p, q)\) systems with critical and Hardy terms in \({\mathbb{R} }^N \), Nonlinear Anal., 211 (2021) · Zbl 1470.35408 · doi:10.1016/j.na.2021.112477
[31] Pucci, P.; Temperini, L., Entire solutions for some critical equations in the Heisenberg group, Opuscula Math., 42, 279-303 (2022) · Zbl 1486.35210 · doi:10.7494/OpMath.2022.42.2.279
[32] Pucci, P.; Temperini, L., Critical equations with Hardy terms in the Heisenberg group, Rendiconti del Circolo Matematico di Palermo Ser., 2, 1-29 (2022) · Zbl 1500.35285
[33] Pucci, P.; Temperini, L., On the concentration-compactness principle for Folland-Stein spaces and for fractional horizontal Sobolev spaces, Math. Eng., 5, 1-21 (2023) · Zbl 1535.35194 · doi:10.3934/mine.2023007
[34] Simon, J.: Régularité de la solution d’une équation non linéaire dans \({\mathbb{R}}^n \), Journées d’Analyse Non. 205-227 (1978) · Zbl 0402.35017
[35] Tintarev, K.; Fieseler, KH, Concentration Compactness Functional-Analytic Grounds and Applications (2007), London: Imperial College Press, London · Zbl 1118.49001 · doi:10.1142/p456
[36] Vassilev, D., Existence of solutions and regularity near the characteristic boundary for sub-Laplacian equations on Carnot groups, Pac. J. Math., 227, 361-397 (2006) · Zbl 1171.35388 · doi:10.2140/pjm.2006.227.361
[37] Zhikov, VV, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50, 675-710 (1986)
[38] Zhikov, VV, On Lavrentiev’s phenomenon, Russ. J. Math. Phys., 3, 249-269 (1995) · Zbl 0910.49020
[39] Zhang, J.; Ji, C., Ground state solutions for a generalized quasilinear Choquard equation, Math. Methods Appl. Sci., 44, 6048-6055 (2021) · Zbl 1473.35272 · doi:10.1002/mma.7169
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.