×

Ground states for scalar field equations with anisotropic nonlocal nonlinearities. (English) Zbl 1335.35034

Summary: We consider a class of scalar field equations with anisotropic nonlocal nonlinearities. We obtain a suitable extension of the well-known compactness lemma of V. Benci and G. Cerami [Arch. Ration. Mech. Anal. 99, 283–300 (1987; Zbl 0635.35036)] to this variable exponent setting, and use it to prove that the Palais-Smale condition holds at all level below a certain threshold. We deduce the existence of a ground state when the variable exponent slowly approaches the limit at infinity from below.

MSC:

35J20 Variational methods for second-order elliptic equations
46B50 Compactness in Banach (or normed) spaces
74G65 Energy minimization in equilibrium problems in solid mechanics

Citations:

Zbl 0635.35036

References:

[1] A. Bahri, On the existence of a positive solution of semilinear elliptic equations in unbounded domains,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14, 365 (1997) · Zbl 0883.35045 · doi:10.1016/S0294-1449(97)80142-4
[2] V. Benci, Positive solutions of some nonlinear elliptic problems in exterior domains,, Arch. Rational Mech. Anal., 99, 283 (1987) · Zbl 0635.35036 · doi:10.1007/BF00282048
[3] H. Berestycki, Nonlinear scalar field equations. I. Existence of a ground state,, Arch. Rational Mech. Anal., 82, 313 (1983) · Zbl 0533.35029 · doi:10.1007/BF00250555
[4] J. Byeon, Symmetry and monotonicity of least energy solutions,, Calc. Var. Partial Differential Equations, 36, 481 (2009) · Zbl 1226.35041 · doi:10.1007/s00526-009-0238-1
[5] L. Diening, <em>Lebesgue and Sobolev Spaces with Variable Exponents</em>,, Lecture Notes in Mathematics (2017) · Zbl 1222.46002 · doi:10.1007/978-3-642-18363-8
[6] X. Fan, On the spaces \(L^{p(\cdot)}(\Omega)\) and \(W^{m,p(x)}(\Omega)\),, J. Math. Anal. Appl., 263, 424 (2001) · Zbl 1028.46041 · doi:10.1006/jmaa.2000.7617
[7] G. Franzina, An eigenvalue problem with variable exponents,, Nonlinear Anal., 85, 1 (2013) · Zbl 1278.35169 · doi:10.1016/j.na.2013.02.011
[8] M. K. Kwong, Uniqueness of positive solutions of \(\Delta u-u+u^p=0\) in \(\mathbbR^n\),, Arch. Rational Mech. Anal., 105, 243 (1989) · Zbl 0676.35032 · doi:10.1007/BF00251502
[9] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case I,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1, 109 (1984) · Zbl 0541.49009
[10] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case II,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1, 223 (1984) · Zbl 0704.49004
[11] P.-L. Lions, Solutions of Hartree-Fock equations for Coulomb systems,, Comm. Math. Phys., 109, 33 (1987) · Zbl 0618.35111 · doi:10.1007/BF01205672
[12] M. Mariş, On the symmetry of minimizers,, Arch. Rational Mech. Anal., 192, 311 (2009) · Zbl 1159.49005 · doi:10.1007/s00205-008-0136-2
[13] S. Solimini, A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev space,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 12, 319 (1995) · Zbl 0837.46025
[14] M. Struwe, <em>Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems</em>,, Ergebnisse der Mathematik und ihrer Grenzgebiete (2008) · Zbl 1284.49004
[15] K. Tintarev, <em>Concentration Compactness. Functional-Analytic Grounds and Applications</em>,, Imperial College Press (2007) · Zbl 1118.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.