×

On maximizers of a convolution operator in \(L_p\)-spaces. (English. Russian original) Zbl 1435.44003

Sb. Math. 210, No. 8, 1129-1147 (2019); translation from Mat. Sb. 210, No. 8, 67-86 (2019).
Summary: The paper is concerned with convolution operators in \(\mathbb R^d\), whose kernels are in \(L_q\), which act from \(L_p\) into \(L_s\), where \(1/p+1/q=1+1/s\). It is shown that for \(1<q,p,s<\infty\) there exists a maximizer (a function with \(L_p\)-norm 1) at which the supremum of the \(s\)-norm of the convolution is attained. A special analysis is carried out for the cases in which one of the exponents \(q, p\), or \(s\) is \(1\) or \(\infty\).

MSC:

44A35 Convolution as an integral transform
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
49J99 Existence theories in calculus of variations and optimal control

References:

[1] Pearson M. 1999 Extremals for a class of convolution operators Houston J. Math.25 43-54 · Zbl 0967.42007
[2] Hardy G. H. 1933 The constants of certain inequalities J. London Math. Soc.8 114-119 · Zbl 0006.34301 · doi:10.1112/jlms/s1-8.2.114
[3] Babenko K. I. 1961 An inequality in the theory of Fourier integrals Izv. Akad. Nauk SSSR. Ser. Mat.25 531-542 · Zbl 0154.13701 · doi:10.1090/trans2/044/07
[4] Beckner W. 1975 Inequalities in Fourier analysis Ann. of Math. (2)102 159-182 · Zbl 0338.42017 · doi:10.2307/1970980
[5] Lions P. L. 1984 The concentration-compactness principle in the calculus of variations. The locally compact case. I Ann. Inst. H. Poincaré Anal. Non Linéaire1 109-145 · Zbl 0541.49009 · doi:10.1016/S0294-1449(16)30428-0
[6] Tintarev K. and Fieseler K.-H. 2007 Concentration compactness. Functional-analytic grounds and applications (London: Imperial College Press) · Zbl 1118.49001 · doi:10.1142/p456
[7] Korpusov M. O. and Sveshnikov A. G. 2011 Nonlinear functional analysis and mathematical modelling in physics. Methods for analysis of nonlinear operators (Moscow: KRASAND)
[8] Hengartner W. and Theodorescu R. 1973 Probab. Math. Statist.20 (New York-London: Academic Press) · Zbl 0323.60015
[9] Bogachev V. I. 2003 Measure theory (Moscow-Izhevsk: Regulyarnaya i Khaoticheskaya Dinamika) · doi:10.1007/978-3-540-34514-5
[10] Busby R. C. and Smith H. A. 1981 Product-convolution operators and mixed-norm spaces Trans. Amer. Math. Soc.263 309-341 · Zbl 0465.43003 · doi:10.1090/S0002-9947-1981-0594411-4
[11] Kemperman J. H. B. 1957 A general functional equation Trans. Amer. Math. Soc.86 28-56 · Zbl 0079.33402 · doi:10.1090/S0002-9947-1957-0094610-0
[12] Aczél J. and Dhombres J. 1989 Encyclopedia Math. Appl.31 (Cambridge: Cambridge Univ. Press) · Zbl 0685.39006 · doi:10.1017/CBO9781139086578
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.