×

Fractional Hardy-Sobolev equations with nonhomogeneous terms. (English) Zbl 1469.35216

Summary: This paper deals with existence and multiplicity of positive solutions to the following class of nonlocal equations with critical nonlinearity: \[ \begin{cases} (-\mathit{\Delta})^s u -\gamma\dfrac{u}{|x|^{2s}}=K(x)\dfrac{|u|^{2^*_s(t)-2}u}{|x|^t}+f(x) \quad\text{in}\quad\mathbb{R}^N,\\ \qquad\qquad\qquad\quad u\in \dot{H}^s(\mathbb{R}^N), \end{cases} \] where \(N > 2s, s \in (0, 1), 0 \leq t < 2s < N\) and \(2^*_s(t):=\frac{2(N-t)}{N-2s}\). Here \(0 < \gamma < \gamma_{N,s}\) and \(\gamma_{N,s}\) is the best Hardy constant in the fractional Hardy inequality. The coefficient \(K\) is a positive continuous function on \(\mathbb{R}^N\), with \(K(0) = 1 = lim_{|x| \rightarrow \infty }K(x)\). The perturbation \(f\) is a nonnegative nontrivial functional in the dual space \(\dot{H}^s(\mathbb{R}^N)'\) of \(\dot{H}^s( \mathbb{R}^N)\). We establish the profile decomposition of the Palais-Smale sequence associated with the functional. Further, if \(K \geq 1\) and \(\| f \|_{(\dot{H}^s)'}\) is small enough (but \(f \not\equiv 0)\), we establish existence of at least two positive solutions to the above equation.

MSC:

35R11 Fractional partial differential equations
35A15 Variational methods applied to PDEs
35B33 Critical exponents in context of PDEs
35J61 Semilinear elliptic equations
35J75 Singular elliptic equations

References:

[1] N. Abatangelo and E. Valdinoci, Getting acquainted with the fractional Laplacian, Contemporary research in elliptic PDEs and related topics, Springer INdAM Ser., 33, Springer, Cham (2019), 1-105. · Zbl 1432.35216
[2] B. Abdellaoui, A. Attar, A. Dieb and I. Peral, Attainability of the fractional Hardy constant with nonlocal mixed boundary conditions: applications, Discrete Contin. Dyn. Syst. 38 (2018), no. 12, 5963-5991. · Zbl 1524.35669
[3] B. Abdellaoui, M. Medina, I. Peral and A. Primo, The effect of the Hardy potential in some Calderón-Zygmund properties for the fractional Laplacian, J. Differential Equations, 260 (2016), no 11, 8160-8206. · Zbl 1386.35422
[4] Adimurthi and A. Mallick A Hardy type inequality on fractional order Sobolev spaces on the Heisenberg group. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 18 (2018), no. 3, 917-949. · Zbl 1406.46022
[5] S. Alarcón and J. Tan, Sign-changing solutions for some nonhomogeneous nonlocal critical elliptic problems, Discrete Contin. Dyn. Syst. 39 (2019), no. 10, 5825-5846. · Zbl 1427.35040
[6] M. Bhakta, A. Biswas, D. Ganguly and L. Montoro, Integral representation of solutions using Green function for fractional Hardy equations, J. Differential Equations 269 (2020), no. 7, 5573-5594. · Zbl 1448.35541
[7] M. Bhakta, S. Chakraborty and D. Ganguly, Existence and Multiplicity of positive solutions of certain nonlocal scalar field equations, preprint, arXiv: 1910:07919.
[8] M. Bhakta and P. Pucci, On multiplicity of positive solutions for nonlocal equations with critical nonlinearity, Nonlinear Anal. 197 (2020), 111853, 22 pp. · Zbl 1447.35348
[9] M. Bhakta and K. Sandeep, Hardy-Sobolev-Maz’ya type equations in bounded domains, J. Differential Equations 247 (2009), no. 1, 119-139. · Zbl 1171.35040
[10] K. Bogdan, T. Grzywny, T. Jakubowski and D. Pilarczyk, Fractional Laplacian with Hardy Potential, Comm. Partial Differential Equations 44, (2019), no 1, 20-50. · Zbl 07051869
[11] W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math. 59 (2006), no. 3, 330-343. · Zbl 1093.45001
[12] L. M. Del Pezzo and A. Quaas, A Hopf’s lemma and a strong minimum principle for the fractional p-Laplacian, J. Differential Equations 263 (2017), no. 1, 765-778. · Zbl 1362.35061
[13] S. Dipierro, L. Montoro, I. Peral and B. Sciunzi, Qualitative properties of positive solutions to nonlocal critical problems involving the Hardy-Leray potential, Calc. Var. Partial Differential Equations 55 (2016), Art. 99, 29 pp. · Zbl 1361.35191
[14] V. Felli and A. Pistoia, Existence of Blowing-up Solutions for a Nonlinear Elliptic Equation with Hardy Potential and Critical Growth, Comm. Partial Differential Equations 31, (2006), no. 1-3, 21-56. · Zbl 1225.35087
[15] R. L. Frank, E. H. Lieb and R. Seiringer, Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc. 21 (2008), no 4, 925-950. · Zbl 1202.35146
[16] R. L. Frank and R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal. 255 (2008), 3407-3430. · Zbl 1189.26031
[17] N. Ghoussoub, F. Robert, S. Shakerian and M. Zhao, Mass and asymptotics associated to fractional Hardy-Schrödinger operators in critical regimes, Comm. Partial Differential Equations 43 (2018), no. 6, 859-892. · Zbl 1406.35465
[18] N. Ghoussoub and S. Shakerian, Borderline variational problems involving fractional Laplacians and critical singularities, Adv. Nonlinear Stud. 15 (2015), no. 3, 527-555. · Zbl 1336.35357
[19] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Rev. Mat. Iberoamericana 1 (1985), 45-121. · Zbl 0704.49006
[20] A. Mallick, Extremals for fractional order Hardy-Sobolev-Maz’ya inequality, Calc. Var. Partial Differential Equations 58 (2019), no. 2, no. 45, 37 pp. · Zbl 1417.46025
[21] G. Palatucci and A. Pisante, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equations 50 (2014), no. 3-4, 799-829. · Zbl 1296.35064
[22] G. Palatucci and A. Pisante, A global compactness type result for Palais-Smale sequences in fractional Sobolev spaces, Nonlinear Anal. 117 (2015), 1-7. · Zbl 1312.35092
[23] X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl, (9) 101 (2014), 275-302. · Zbl 1285.35020
[24] X. Shang, J. Zhang and Y. Yang, Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent, Commun. Pure Appl. Anal. 13 (2014), no. 2, 567-584. · Zbl 1279.35046
[25] D. Smets, Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities, Trans. Amer. Math. Soc. 357 (2005), no. 7, 2909-2938. · Zbl 1134.35348
[26] M. Struwe, Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems, Fourth edition, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge. A Series of Modern Surveys in Mathematics 34, Springer-Verlag, Berlin, 2008, xx+302 pp. · Zbl 1284.49004
[27] K. Tintarev and K.-H. Fieseler, Concentration Compactness. Functional-Analytic Grounds and Applications. Imperial College Press, London 2007, xii+264 pp. · Zbl 1118.49001
[28] F. Wang and Y. Zhang, Existence of multiple positive solutions for nonhomogeneous fractional Laplace problems with critical growth, Bound. Value Probl. 2019, Paper no. 169, 21 pp. · Zbl 1524.35727
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.