×

\(p\)-Laplacian boundary value problems on exterior regions. (English) Zbl 1332.35101

Summary: This paper treats some variational principles for solutions of inhomogeneous \(p\)-Laplacian boundary value problems on exterior regions \(U\subsetneq\mathbb R^N\) with dimension \(N\geq 3\). Existence-uniqueness results when \(p\in(1,N)\) are provided in a space \(E^{1,p}(U)\) of functions that contains \(W^{1,p}(U)\). Functions in \(E^{1,p}(U)\) are required to decay at infinity in a measure theoretic sense. Various properties of this space are derived, including results about equivalent norms, traces and an \(L^p\)-imbedding theorem. Also an existence result for a general variational problem of this type is obtained.

MSC:

35J35 Variational methods for higher-order elliptic equations
35J40 Boundary value problems for higher-order elliptic equations
35A15 Variational methods applied to PDEs
Full Text: DOI

References:

[1] Amrouche, C.; Girault, V.; Giroire, J., Dirichlet and Neumann exterior problems for the \(n\)-dimensional Laplace operator: an approach in weighted Sobolev spaces, J. Math. Pures Appl., 76, 55-81 (1997) · Zbl 0878.35029
[2] Auchmuty, G., Optimal coercivity inequalities in \(W^{1, p}(\Omega)\), Proc. Roy. Soc. Edinburgh Sect. A, 135, 915-933 (2005) · Zbl 1185.26036
[3] Auchmuty, G.; Han, Q., Representations of solutions of Laplacian boundary value problems on exterior regions, Appl. Math. Optim., 69, 21-45 (2014) · Zbl 1311.35086
[4] Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations (2011), Springer: Springer New York · Zbl 1220.46002
[5] Dall’Aglio, A.; De Cicco, V.; Giachetti, D.; Puel, J.-P., Existence of bounded solutions for nonlinear elliptic equations in unbounded domains, NoDEA Nonlinear Differential Equations Appl., 11, 431-450 (2004) · Zbl 1120.35038
[6] Daners, D.; Drábek, P., A priori estimates for a class of quasi-linear elliptic equations, Trans. Amer. Math. Soc., 361, 6475-6500 (2009) · Zbl 1181.35098
[7] Deny, J.; Lions, J.-L., Les espaces du type de Beppo Levi, Ann. Inst. Fourier, 5, 305-370 (1954) · Zbl 0065.09903
[8] DiBenedetto, E., Real Analysis (2002), Birkhäuser Boston Inc.: Birkhäuser Boston Inc. Boston, MA · Zbl 1012.26001
[9] Evans, L. C.; Gariepy, R. F., Measure Theory and Fine Properties of Functions (1992), CRC Press: CRC Press Boca Raton, FL · Zbl 0804.28001
[10] Fonseca, I.; Leoni, G., Modern Methods in the Calculus of Variations: \(L^p\) Spaces (2007), Springer: Springer New York · Zbl 1153.49001
[11] Galdi, G. P., An Introduction to the Mathematical Theory of the Navier-Stokes Equations, vol. I: Linearized Steady Problems (1994), Springer-Verlag: Springer-Verlag New York · Zbl 0949.35004
[12] Grisvard, P., Elliptic Problems in Nonsmooth Domains (1985), Pitman: Pitman Boston, MA · Zbl 0695.35060
[13] Lieb, E.; Loss, M., Analysis (2001), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0966.26002
[14] Nédélec, J.-C., Acoustic and Electromagnetic Equations (2001), Springer-Verlag: Springer-Verlag New York · Zbl 0981.35002
[15] Simader, C. G.; Sohr, H., The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains. A New Approach to Weak, Strong and \((2 + k)\)-Solutions in Sobolev-Type Spaces (1996), Longman: Longman Harlow · Zbl 0868.35001
[16] Tintarev, K.; Fieselr, K.-H., Concentration Compactness (2007), Imperial College Press: Imperial College Press London · Zbl 1118.49001
[17] Vainberg, M. M., Variational Methods for the Study of Nonlinear Operators (1964), Holden-Day: Holden-Day San Francisco · Zbl 0122.35501
[18] Varnhorn, W., The Poisson equation with weights in exterior domains of \(R^n\), Appl. Anal., 43, 135-145 (1992) · Zbl 0719.35020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.