×

Quantum amplitudes in black-hole evaporation: complex approach and spin-0 amplitude. (English) Zbl 1221.83029

Summary: This paper is concerned with the quantum-mechanical decay of a Schwarzschild-like black hole, formed by gravitational collapse, into almost-flat space-time and weak radiation at a very late time. We evaluate quantum amplitudes (not just probabilities) for transitions from initial to final states. This quantum description shows that no information is lost in collapse to a black hole. Boundary data for the gravitational field and (in this paper) a scalar field are posed on an initial space-like hypersurface \(\Sigma_I\) and a final surface \(\Sigma_F\). These asymptotically flat three-surfaces are separated by a Lorentzian proper-time interval \(T\) (typically very large), as measured at spatial infinity. The boundary-value problem is made well-posed, both classically and quantum-mechanically, by a rotation of \(T\) into the lower-half complex plane: \(T\rightarrow|T|\exp(-i\theta)\), with \(0<\theta\leq \pi/2\). This corresponds to Feynman’s \(+i\varepsilon \) prescription. We consider the classical boundary-value problem and calculate the second-variation classical Lorentzian action \(S^{(2)}_{\text{class}}\) as a functional of the boundary data. Following Feynman, the Lorentzian quantum amplitude is recovered in the limit \(\theta\rightarrow 0_+\) from the well-defined complex-\(T\) amplitude. Dirac’s canonical approach to the quantisation of constrained systems shows that, for locally supersymmetric theories of gravity, the amplitude is exactly semi-classical, namely \(\exp (iS^{(2)}_{\text{class}})\) for weak perturbations, apart from delta functionals of the supersymmetry constraints. We treat such quantum amplitudes for weak scalar-field configurations on \(\Sigma_F\), taking (for simplicity) the weak final gravitational field to be spherically symmetric. The treatment involves adiabatic solutions to the scalar wave equation. This considerably extends work reported in previous papers, by giving explicit expressions for the real and imaginary parts of such quantum amplitudes.

MSC:

83C57 Black holes
83C75 Space-time singularities, cosmic censorship, etc.
81P15 Quantum measurement theory, state operations, state preparations
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
81S40 Path integrals in quantum mechanics
83C47 Methods of quantum field theory in general relativity and gravitational theory

References:

[1] DOI: 10.1016/j.aop.2005.11.011 · Zbl 1097.83018 · doi:10.1016/j.aop.2005.11.011
[2] DOI: 10.1088/0264-9381/22/14/010 · Zbl 1129.83325 · doi:10.1088/0264-9381/22/14/010
[3] DOI: 10.1016/j.physletb.2004.09.004 · Zbl 1247.83082 · doi:10.1016/j.physletb.2004.09.004
[4] DOI: 10.1016/j.physletb.2005.03.034 · Zbl 1247.83083 · doi:10.1016/j.physletb.2005.03.034
[5] DOI: 10.1142/S0218271807009103 · Zbl 1120.83302 · doi:10.1142/S0218271807009103
[6] DOI: 10.1103/PhysRevLett.85.5042 · Zbl 1369.83053 · doi:10.1103/PhysRevLett.85.5042
[7] DOI: 10.1023/B:GERG.0000046850.67053.49 · Zbl 1063.83013 · doi:10.1023/B:GERG.0000046850.67053.49
[8] Garabedian P. R., Partial Differential Equations (1964) · Zbl 0124.30501
[9] Y. Choquet-Bruhat and J. W. York, General Relativity and Gravitation 1, ed. A. Held (Plenum, New York, 1980) p. 99.
[10] A. E. Fischer and J. E. Marsden, General Relativity, eds. S. W. Hawking and W. Israel (Cambridge University Press, 1979) p. 138.
[11] DOI: 10.1017/CBO9780511524424 · Zbl 0889.53052 · doi:10.1017/CBO9780511524424
[12] McLean W., Strongly Elliptic Systems and Boundary Integral Equations (2000) · Zbl 0948.35001
[13] Feynman R. P., Quantum Mechanics and Path Integrals (1965) · Zbl 0176.54902
[14] Itzykson C., Quantum Field Theory (1980)
[15] Misner C. W., Gravitation (1973)
[16] J. A. Wheeler, Battelle Rencontres, eds. C. M. DeWitt and J. A. Wheeler (W. A. Benjamin, New York, 1968) p. 303.
[17] DOI: 10.1103/PhysRevD.24.811 · doi:10.1103/PhysRevD.24.811
[18] Vaidya P. C., Proc. Indian Acad. Sci. A 33 pp 264–
[19] DOI: 10.1103/PhysRev.137.B1364 · doi:10.1103/PhysRev.137.B1364
[20] DOI: 10.1007/s10714-006-0231-3 · Zbl 1097.83019 · doi:10.1007/s10714-006-0231-3
[21] P. D. D’Eath, Fundamental Problems in Classical, Quantum and String Gravity, ed. N. Sánchez (Observatoire de Paris, 1999) p. 166.
[22] P. D. D’Eath, The Future of Theoretical Physics and Cosmology, eds. G. W. Gibbons, E. P. S. Shellard and S. J. Rankin (Cambridge University Press, 2003) p. 693.
[23] DOI: 10.1103/PhysRevD.28.2960 · Zbl 1370.83118 · doi:10.1103/PhysRevD.28.2960
[24] Dirac P. A. M., Lectures on Quantum Mechanics (1965) · Zbl 1156.01359
[25] Wess J., Supersymmetry and Supergravity (1992)
[26] D’Eath P. D., Black Holes: Gravitational Interactions (1996)
[27] DOI: 10.1016/0370-2693(87)90159-6 · doi:10.1016/0370-2693(87)90159-6
[28] S. Giddings, The Future of Theoretical Physics and Cosmology, eds. G. W. Gibbons, E. P. S. Shellard and S. J. Rankin (Cambridge University Press, 2003) p. 278.
[29] DOI: 10.1137/0110059 · Zbl 0114.21201 · doi:10.1137/0110059
[30] DOI: 10.1063/1.1705135 · Zbl 0155.57402 · doi:10.1063/1.1705135
[31] Kobayashi S., Foundations of Differential Geometry (1969) · Zbl 0175.48504
[32] DOI: 10.1088/0264-9381/15/11/010 · Zbl 0946.83021 · doi:10.1088/0264-9381/15/11/010
[33] DOI: 10.1007/BF01205930 · Zbl 0608.35039 · doi:10.1007/BF01205930
[34] DOI: 10.1007/BF01463398 · Zbl 0613.53047 · doi:10.1007/BF01463398
[35] DOI: 10.1007/BF01208960 · Zbl 0613.53049 · doi:10.1007/BF01208960
[36] DOI: 10.1002/cpa.3160440305 · Zbl 0728.53061 · doi:10.1002/cpa.3160440305
[37] DOI: 10.1002/cpa.3160460803 · Zbl 0853.35122 · doi:10.1002/cpa.3160460803
[38] DOI: 10.1007/BF01645486 · doi:10.1007/BF01645486
[39] Choptuik M. W., Approaches to Numerical Relativity (1992)
[40] DOI: 10.1103/PhysRevLett.70.9 · doi:10.1103/PhysRevLett.70.9
[41] DOI: 10.1017/CBO9780511524646 · Zbl 0265.53054 · doi:10.1017/CBO9780511524646
[42] DOI: 10.1103/PhysRevD.18.1789 · doi:10.1103/PhysRevD.18.1789
[43] Brill D., Phys. Rev. 135 pp 1327–
[44] DOI: 10.1103/PhysRev.166.1272 · doi:10.1103/PhysRev.166.1272
[45] Nayfeh A., Perturbation Methods (1973) · Zbl 0265.35002
[46] DOI: 10.1007/978-1-4757-3069-2 · doi:10.1007/978-1-4757-3069-2
[47] d’Inverno R., Introducing Einstein’s Relativity (1992)
[48] Jackson J. D., Classical Electrodynamics (1975) · Zbl 0997.78500
[49] DOI: 10.1103/PhysRev.108.1063 · Zbl 0079.41902 · doi:10.1103/PhysRev.108.1063
[50] DOI: 10.1103/PhysRevD.1.2870 · doi:10.1103/PhysRevD.1.2870
[51] DOI: 10.1103/PhysRevD.2.2141 · Zbl 1227.83025 · doi:10.1103/PhysRevD.2.2141
[52] DOI: 10.1017/CBO9780511735615 · doi:10.1017/CBO9780511735615
[53] Arnowitt R., Gravitation: An Introduction to Current Research (1962)
[54] DOI: 10.1016/0375-9601(80)90439-9 · doi:10.1016/0375-9601(80)90439-9
[55] DOI: 10.1103/PhysRevLett.46.382 · doi:10.1103/PhysRevLett.46.382
[56] DOI: 10.1103/PhysRevD.23.2823 · doi:10.1103/PhysRevD.23.2823
[57] DOI: 10.1103/PhysRevD.15.2738 · doi:10.1103/PhysRevD.15.2738
[58] DOI: 10.1103/PhysRevD.31.1777 · doi:10.1103/PhysRevD.31.1777
[59] DOI: 10.1103/PhysRevD.13.3176 · doi:10.1103/PhysRevD.13.3176
[60] Abramowitz M., Handbook of Mathematical Functions (1964) · Zbl 0171.38503
[61] DOI: 10.1086/154350 · doi:10.1086/154350
[62] DOI: 10.1007/BF02345020 · Zbl 1378.83040 · doi:10.1007/BF02345020
[63] DOI: 10.1017/CBO9780511622632 · doi:10.1017/CBO9780511622632
[64] DOI: 10.1007/978-94-011-5139-9 · doi:10.1007/978-94-011-5139-9
[65] DOI: 10.1016/j.physletb.2006.01.020 · Zbl 1247.83081 · doi:10.1016/j.physletb.2006.01.020
[66] DOI: 10.1088/0264-9381/24/1/006 · Zbl 1134.83320 · doi:10.1088/0264-9381/24/1/006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.