×

Relativistic elasticity of rigid rods and strings. (English) Zbl 1308.83101

Summary: We show that the equation of motion for a rigid one-dimensional elastic body (i.e. a rod or string whose speed of sound is equal to the speed of light) in a two-dimensional spacetime is simply the wave equation. We then solve this equation in a few simple examples: a rigid rod colliding with an unmovable wall, a rigid rod being pushed by a constant force, a rigid string whose endpoints are simultaneously set in motion (seen as a special case of Bell’s spaceships paradox), and a radial rigid string that has partially crossed the event horizon of a Schwarzschild black hole while still being held from the outside.

MSC:

83C57 Black holes
83C75 Space-time singularities, cosmic censorship, etc.
83C10 Equations of motion in general relativity and gravitational theory
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
81P15 Quantum measurement theory, state operations, state preparations
83A05 Special relativity
35L05 Wave equation

References:

[1] Andersson, L., Beig, R., Schmidt, B.: Static self-gravitating elastic bodies in Einstein gravity. Commun. Pure Appl. Math. 61, 988-1023 (2008) · Zbl 1140.83366 · doi:10.1002/cpa.20230
[2] Andersson, L., Beig, R., Schmidt, B.: Rotating elastic bodies in Einstein gravity. Commun. Pure Appl. Math. 63, 559-589 (2009) · Zbl 1186.83069
[3] Andréasson, H., Calogero, S.: Spherically symmetric steady states of elastic bodies in general relativity. arXiv:1403.2565 (2014) · Zbl 1298.83034
[4] Brito, I., Carot, J., Mena, F., Vaz, E.: Cylindrically symmetric static solutions of the Einstein field equations for elastic matter. arXiv:1403.5684 (2014) · Zbl 1278.83007
[5] Brito, I., Carot, J., Vaz, E.: General spherically symmetric elastic stars in relativity. Gen. Relativ. Gravit. 42, 2357-2382 (2010) · Zbl 1200.85012 · doi:10.1007/s10714-010-0980-x
[6] Bell, J.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987) · Zbl 1239.81001
[7] Bento, L.: Transverse waves in a relativistic rigid body. Int. J. Theor. Phys. 24, 653-657 (1985) · Zbl 0574.73043 · doi:10.1007/BF00670470
[8] Brotas, A., Fernandes, J.: The relativistic elasticity of rigid bodies. arXiv:physics/0307019 (2003) · Zbl 0876.53057
[9] Brotas, A.: Fishing in black holes. arXiv:gr-qc/0609005 (2004) · Zbl 1060.83027
[10] Beig, R., Schmidt, B.: Relativistic elasticity. Class. Quantum Gravit. 20, 889-904 (2002) · Zbl 1027.83017 · doi:10.1088/0264-9381/20/5/308
[11] Carter, B.: Speed of sound in a high-pressure general-relativistic solid. Phys. Rev. D 7, 1590-1593 (1973) · doi:10.1103/PhysRevD.7.1590
[12] Calogero, S., Heinzle, J.: Dynamics of Bianchi I elastic spacetimes. Class. Quantum Gravit. 24, 5173-5200 (2007) · Zbl 1206.83039 · doi:10.1088/0264-9381/24/20/016
[13] Christodoulou, D.: The Formation of Shocks in 3-Dimensional Fluids. EMS, Zürich (2007) · Zbl 1117.35001
[14] Carter, B., Quintana, H.: Foundations of general relativistic high-pressure elasticity theory. Proc. R. Soc. Lond. A 331, 57-83 (1972) · Zbl 0249.73093 · doi:10.1098/rspa.1972.0164
[15] Dewan, E., Beran, M.: Note on stress effects due to relativistic contraction. Am. J. Phys. 27, 517-518 (1959) · doi:10.1119/1.1996214
[16] Egan, G.: The Rindler Horizon. www.gregegan.net/SCIENCE/Rindler/RindlerHorizon.html (2006)
[17] Hogarth, J., McCrea, W.: The relativistically rigid rod. Math. Proc. Camb. Philos. Soc. 48, 616-624 (1952) · Zbl 0047.20701 · doi:10.1017/S0305004100076404
[18] Kijowski, J., Magli, G.: Relativistic elastomechanics as a Lagrangian field theory. J. Geom. Phys. 9, 207-223 (1992) · Zbl 0771.73004 · doi:10.1016/0393-0440(92)90028-Y
[19] Karlovini, M., Samuelsson, L.: Elastic stars in general relativity: I. Foundations and equilibrium models. Class. Quantum Gravit. 20, 3613-3648 (2003) · Zbl 1046.83021 · doi:10.1088/0264-9381/20/16/307
[20] Karlovini, M., Samuelsson, L.: Elastic stars in general relativity: III. Stiff ultrarigid exact solutions. Class. Quantum Gravit. 21, 4531-4548 (2004) · Zbl 1060.83027 · doi:10.1088/0264-9381/21/19/003
[21] Magli, G.: Gravitational collapse with non-vanishing tangential stresses: a generalization of the Tolman-Bondi model. Class. Quantum Gravit. 14, 1937-1953 (1997) · Zbl 0876.53057 · doi:10.1088/0264-9381/14/7/026
[22] Magli, G.: Gravitational collapse with non-vanishing tangential stresses II: a laboratory for cosmic censorship experiments. Class. Quantum Gravit. 15, 3215-3228 (1998) · Zbl 0942.83046 · doi:10.1088/0264-9381/15/10/022
[23] Maugin, G.: Exact relativistic theory of wave propagation in prestressed nonlinear elastic solids. Ann. Inst. H. Poincaré 28, 155-185 (1978) · Zbl 0375.73025
[24] McCrea, W.: The Fitzgerald-Lorentz contraction - some paradoxes and their resolution. Sci. Proc. R. Dublin Soc. 26, 27-36 (1952)
[25] Misner, C., Thorne, K., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1973)
[26] Park, J.: Static solutions of the Einstein equations for spherically symmetric elastic bodies. Gen. Relativ. Gravit. 32, 235-252 (2000) · Zbl 0968.83015 · doi:10.1023/A:1001875224949
[27] Tahvildar-Zadeh, A.: Relativistic and nonrelativistic elastodynamics with small shear strains. Ann. Inst. H. Poincaré 69, 275-307 (1998) · Zbl 0930.74008
[28] van der Weele, J., Snoeijer, J.: Beyond the pole-barn paradox: how the pole is caught. Nonlinear Phenom. Complex Syst. 10, 271-277 (2007)
[29] Wernig-Pichler, M.: Relativistic Elastodynamics. Ph.D. thesis, University of Vienna, (2006) · Zbl 0574.73043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.