×

Global solutions of certain plasma fluid models in three-dimension. (English) Zbl 1308.76340

Summary: We consider several dispersive time-reversible plasma fluid models in 3 dimensions: the Euler-Poisson 2-fluid model, the relativistic Euler-Maxwell 1-fluid model, and the relativistic Euler-Maxwell 2-fluid model. In all of these models, we prove global stability of the constant background solutions, in the sense that small, smooth, and irrotational perturbations lead to smooth global solutions that decay as \(t \to \infty\).{
©2014 American Institute of Physics}

MSC:

76X05 Ionized gas flow in electromagnetic fields; plasmic flow
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
Full Text: DOI

References:

[1] Alinhac, S., Temps de vie des solutions régulières des équations d’Euler compressibles axisymétriques en dimension deux. Life spans of the classical solutions of two-dimensional axisymmetric compressible Euler equations, Invent. Math., 111, 1, 627-670 (1993) · Zbl 0798.35129 · doi:10.1007/BF01231301
[2] Bittencourt, J. A., Fundamentals of Plasma Physics (2004) · Zbl 1084.76001
[3] Cordier, S.; Grenier, E., Quasineutral limit of an Euler-Poisson system arising from plasma physics, Commun. Partial Differ. Equations, 25, 5-6, 1099-1113 (2000) · Zbl 0978.82086 · doi:10.1080/03605300008821542
[4] Chen, F., Introduction to Plasma Physics (1995)
[5] Chen, G.-Q.; Jerome, J.; Wang, D., Compressible Euler-Maxwell equations, Transp. Theory Stat. Phys., 29, 311-331 (2000) · Zbl 1019.82023 · doi:10.1080/00411450008205877
[6] Crispel, P.; Degond, P.; Vignal, M. M.-H., An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasi neutral limit, J. Comput. Phys., 223, 208-234 (2007) · Zbl 1163.76062 · doi:10.1016/j.jcp.2006.09.004
[7] Christodoulou, D., Global solutions of nonlinear hyperbolic equations for small initial data, Commun. Pure Appl. Math., 39, 267-282 (1986) · Zbl 0612.35090 · doi:10.1002/cpa.3160390205
[8] Christodoulou, D., The Formation of Shocks in 3-Dimensional Fluids (2007) · Zbl 1117.35001
[9] Delcroix, J.-L.; Bers, A., Physique des plasmas (1994)
[10] Degond, P.; Deluzet, F.; Savelief, D., Numerical approximation of the Euler-Maxwell model in the quasineutral limit, J. Comput. Phys., 231, 4, 1917-1946 (2012) · Zbl 1244.82009 · doi:10.1016/j.jcp.2011.11.011
[11] Gérard-Varet, D.; Han-Kwan, D.; Rousset, F., Quasineutral limit of the Euler-Poisson system for ions in a domain with boundaries, Indiana Univ. Math. J., 62, 2, 359-402 (2013) · Zbl 1417.35119 · doi:10.1512/iumj.2013.62.4900
[12] Germain, P.; Masmoudi, N., Global existence for the Euler-Maxwell system, Ann. Sci. c. Norm. Supr. (4), 47, 3, 469-503 · Zbl 1311.35195
[13] Germain, P.; Masmoudi, N.; Pausader, B., Non-neutral global solutions for the electron Euler-Poisson system in 3D, SIAM J. Math. Anal., 45, 1, 267-278 (2013) · Zbl 1282.35285 · doi:10.1137/12087270X
[14] Germain, P.; Masmoudi, N.; Shatah, J., Global solutions for 3D quadratic Schrödinger equations, Int. Math. Res. Not., 3, 414-432 (2009) · Zbl 1156.35087 · doi:10.1093/imrn/rnn135
[15] Germain, P.; Masmoudi, N.; Shatah, J., Global solutions for the gravity water waves equation in dimension 3, Ann. Math. (2), 175, 2, 691-754 (2012) · Zbl 1241.35003 · doi:10.4007/annals.2012.175.2.6
[16] Germain, P.; Masmoudi, N.; Shatah, J., Global existence for capillary water-waves, Commun. Pure. Appl. Math. · Zbl 1244.35134
[17] Guo, Y., Smooth irrotational flows in the large to the Euler-Poisson system in \(ℝ^{3+1}\), Commun. Math. Phys., 195, 2, 249-265 (1998) · Zbl 0929.35112 · doi:10.1007/s002200050388
[18] Guo, Y.; Ionescu, A. D.; Pausader, B., Global solutions of the Euler-Maxwell two-fluid system in 3D · Zbl 1345.35075
[19] Guo, Y.; Pausader, B., Global smooth ion dynamics in the Euler-Poisson system, Commun. Math. Phys., 303, 89-125 (2011) · Zbl 1220.35129 · doi:10.1007/s00220-011-1193-1
[20] Guo, Y.; Pu, X., KdV limit of the Euler-Poisson system · Zbl 1283.35110
[21] Guo, Y.; Tahvildar-Zadeh, S., Formation of singularities in relativistic fluid dynamics and in spherically symmetric plasma dynamics · Zbl 0973.76100
[22] Gustafson, S.; Stephen, K. Nakanishi; Tsai, T.-P., Scattering theory for the Gross-Pitaevskii equation in three dimensions, Commun. Contemp. Math., 11, 657-707 (2009) · Zbl 1180.35481 · doi:10.1142/S0219199709003491
[23] Hani, Z.; Pusateri, F.; Shatah, J., Scattering for the Zakharov system in 3 dimensions, Commun. Math. Phys., 322, 3, 731-753 (2013) · Zbl 1307.35278 · doi:10.1007/s00220-013-1738-6
[24] Ionescu, A. D.; Pausader, B., The Euler-Poisson system in 2D: Global stability of the constant equilibrium solution, Int. Math. Res. Not., 2013, 761-826 · Zbl 1320.35270
[25] Ionescu, A. D.; Pausader, B., Global solutions of quasilinear systems of Klein-Gordon equations in 3D, J. Eur. Math. Soc., 16, 11, 2355-2431 (2014) · Zbl 1316.35180 · doi:10.4171/JEMS/489
[26] 26.A. D.Ionescu and F.Pusateri, “Nonlinear fractional Schrödinger equations in one dimensions,” J. Funct. Anal.266(1), 139-176 (2014);10.1016/j.jfa.2013.08.027A. D.Ionescu and F.Pusateri, e-print arXiv:1209.4943. · Zbl 1304.35749
[27] Ionescu, A. D.; Pusateri, F., Global solutions for the gravity water waves system in 2D · Zbl 1325.35151
[28] Jang, J., The two-dimensional Euler-Poisson system with spherical symmetry, J. Math. Phys., 53, 023701 (2012) · Zbl 1274.76383 · doi:10.1063/1.3682675
[29] Jang, J.; Li, D.; Zhang, X., Smooth global solutions for the two dimensional Euler-Poisson system, Forum Math., 26, 3, 645-701 (2014) · Zbl 1298.35148 · doi:10.1515/forum-2011-0153
[30] John, F., Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscr. Math., 28, 235-268 (1979) · Zbl 0406.35042 · doi:10.1007/BF01647974
[31] Kato, T., The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal., 58, 181-205 (1975) · Zbl 0343.35056 · doi:10.1007/BF00280740
[32] Klainerman, S., Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions, Commun. Pure Appl. Math., 38, 631-641 (1985) · Zbl 0597.35100 · doi:10.1002/cpa.3160380512
[33] Klainerman, S., The null condition and global existence to nonlinear wave equations, Nonlinear Systems of Partial Differential Equations in Applied Mathematics in Part 1, 23, 293-326 (1986) · Zbl 0599.35105
[34] Lannes, D., Linares, F., and Saut, J.-C., “The Cauchy problem for the Euler-Poisson system and derivation of the Zakharov-Kuznetsov equation,” Studies in phase space analysis with applications to PDEs, 181-213, Progr. Nonlinear Dierential Equations Appl., 84, Birkhuser/Springer, New York, 2013. · Zbl 1273.35263
[35] Li, D.; Wu, Y., The Cauchy problem for the two dimensional Euler-Poisson system, J. Eur. Math. Soc · Zbl 1308.35220 · doi:10.4171/JEMS/486
[36] Nejoh, Y.; Sanuki, H., Large amplitude Langmuir and ion-acoustic waves in a relativistic two-fluid plasma, Phys. Plasmas, 1, 2154 (1994) · doi:10.1063/1.870614
[37] Peng, Y. J., Global existence and long-time behavior of smooth solutions of two-fluid Euler-Maxwell equations, Ann. Inst. Henri Poincare, 29, 5, 737-759 (2012) · Zbl 1251.35159 · doi:10.1016/j.anihpc.2012.04.002
[38] Pu, X., Dispersive limit of the Euler-Poisson system in higher dimensions, SIAM J. Math. Anal. · Zbl 1291.35306
[39] Shatah, J., Normal forms and quadratic nonlinear Klein-Gordon equations, Commun. Pure Appl. Math., 38, 685-696 (1985) · Zbl 0597.35101 · doi:10.1002/cpa.3160380516
[40] Sideris, T., Formation of singularities in three-dimensional compressible fluids, Commun. Math. Phys., 101, 475-485 (1985) · Zbl 0606.76088 · doi:10.1007/BF01210741
[41] Texier, B., Derivation of the Zakharov equations, Arch. Ration. Mech. Anal., 184, 1, 121-183 (2007) · Zbl 1370.35249 · doi:10.1007/s00205-006-0034-4
[42] Tsintsadze, N. L., Effects of electron mass variations in a strong electromagnetic wave, Phys. Scr., 1990, 41 (1990) · doi:10.1088/0031-8949/1990/
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.