×

Analysis of retrial queue with heterogeneous servers and Markovian arrival process. (English) Zbl 1473.60140

Joshua, V. C. (ed.) et al., Applied probability and stochastic processes. Selected papers based on the presentations at the international conference, Kerala, India, January, 7–10 2019. In honour of Prof. Dr. A. Krishnamoorthy. Singapore: Springer. Infosys Sci. Found. Ser., 29-49 (2020).
Summary: Multi-server retrial queueing system with heterogeneous servers is analyzed. Customers arrive to the system according to the Markovian arrival process. Arriving primary customers and customers retrying from orbit occupy available server with the highest service rate, if any. Otherwise, the customers move to the orbit having an infinite capacity. Service times have exponential distribution. The total retrial rate infinitely increases when the number of customers in orbit increases. Behavior of the system is described by multi-dimensional continuous-time Markov chain which belongs to the class of asymptotically quasi-Toeplitz Markov chains. This allows to derive simple and transparent ergodicity condition and compute the stationary distribution of the chain. Presented numerical results illustrate the dynamics of some performance indicators of the system when the average arrival rate increases and the importance of account of correlation in the arrival process.
For the entire collection see [Zbl 1468.60003].

MSC:

60K25 Queueing theory (aspects of probability theory)
Full Text: DOI

References:

[1] Artalejo, J.R., Gomez-Corral, A.: Retrial Queueing Systems: A Computational Approach. Springer, Berlin (2008) · Zbl 1161.60033 · doi:10.1007/978-3-540-78725-9
[2] Breuer, L., Dudin, A.N., Klimenok, V.I.: A retrial BMAP∕PN∕Nsystem. Queueing Syst. 40, 433-457 (2002) · Zbl 1169.90335 · doi:10.1023/A:1015041602946
[3] Chakravarthy, S.R.: The batch Markovian arrival process: a review and future work. In: Krishnamoorthy, A., Raju, N., Ramaswami, V. (eds.) Advances in Probability Theory and Stochastic Processes. Notable Publications, New Jersey, pp. 21-29 (2001)
[4] Dudin, S., Dudina, O.: Retrial multi-server queueing system with PHF service time distribution as a model of a channel with unreliable transmission of information. Appl. Math. Model. 65, 676-695 (2019) · Zbl 1481.90128 · doi:10.1016/j.apm.2018.09.005
[5] Efrosinin, D.V.: Controlled Queueing Systems with Heterogeneous Servers. Ph.D. Dissertation, Trier University, Germany (2004) · Zbl 1061.90035
[6] Efrosinin, D., Breuer, L.: Threshold policies for controlled retrial queues with heterogeneous servers. Ann. Oper. Res. 41(1), 139-162 (2006) · Zbl 1114.90020 · doi:10.1007/s10479-006-5297-5
[7] Efrosinin, D., Sztrik, J.: Performance analysis of a two-server heterogeneous retrial queue with threshold policy. Quality Technol. Quant. Manag. 8(3), 211-236 (2011) · doi:10.1080/16843703.2011.11673256
[8] Falin, G.: Stability of the multiserver queue with addressed retrials. Ann. Oper. Res. 196(1) 241-246 (2012) · Zbl 1259.90020 · doi:10.1007/s10479-011-1053-6
[9] Falin, G.I., Templeton, J.G.C.: Retrial Queues. Chapman & Hall, London (1997) · Zbl 0944.60005 · doi:10.1007/978-1-4899-2977-8
[10] Klimenok V., Dudin, A.: Multi-dimensional asymptotically quasi-Toeplitz Markov chains and their application in queueing theory. Queueing Syst. 54(4), 245-259 (2006) · Zbl 1107.60060 · doi:10.1007/s11134-006-0300-z
[11] Lin, W., Kumar, P.R.: Optimal control of a queueing system with two heterogeneous servers. IEEE Trans. Autom. Control 29, 696-703 (1984) · Zbl 0546.90035 · doi:10.1109/TAC.1984.1103637
[12] Luh, H.P., Viniotis, I.: Optimality of Threshold Policies for Heterogeneous Server Systems. North Carolina State University, Raleigh (1990) · Zbl 1037.90010 · doi:10.1109/CDC.1990.203714
[13] Lucantoni, D.: New results on the single server queue with a batch Markovian arrival process. Commun. Stat. Stoch. Models 7, 1-46 (1991) · Zbl 0733.60115 · doi:10.1080/15326349108807174
[14] Mushko, V.V., Jacob, M.J., Ramakrishnan, K.O., Krishnamoorthy, A., Dudin, A.N.: Multiserver queue with addressed retrials. Ann. Oper. Res. 141, 283-301 (2006) · Zbl 1122.90023 · doi:10.1007/s10479-006-5304-2
[15] Neuts M. Matrix-Geometric Solutions in Stochastic Models. The Johns Hopkins University Press, Baltimore (1981) · Zbl 0469.60002
[16] Nobel, R., Tijms, H.C.: Optimal control of a queueing system with heterogeneous servers. IEEE Trans. Autom. Control 45(4), 780-784 (2000) · Zbl 0988.90007 · doi:10.1109/9.847122
[17] Rosberg, Z., Makowski, A.M.: Optimal routing to parallel heterogeneous servers-small arrival rates. Trans. Autom. Control 35(7), 789-796 (1990) · Zbl 0705.60090 · doi:10.1109/9.57017
[18] Rykov, V.V.: Monotone control of queueing systems with heterogeneous servers. Queueing Syst. 37, 391-403 (2001) · Zbl 1017.90026 · doi:10.1023/A:1010893501581
[19] Rykov, V.V., Efrosinin, D.V.: Numerical analysis of optimal control polices for queueing systems with heterogeneous servers. Inf. Process. 2(2), 252-256 (2002) · Zbl 1390.90209
[20] Vishnevskii, V.M., Dudin, A.N.: Queueing systems with correlated arrival flows and their applications to modeling telecommunication networks. Autom. Remote Control 78, 1361-1403 (2017) · Zbl 1377.60089 · doi:10.1134/S000511791708001X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.