×

Elements of postmodern harmonic analysis. (English) Zbl 1329.42031

Gröchenig, Karlheinz (ed.) et al., Operator-related function theory and time-frequency analysis. The Abel symposium 2012, Oslo, Norway, August 20–24, 2012. Cham: Springer (ISBN 978-3-319-08556-2/hbk; 978-3-319-08557-9/ebook). Abel Symposia 9, 77-105 (2015).
The author describes his vision of the so-called “Postmodern Harmonic Analysis” focussing the presentation on the concept of Conceptual Harmonic Analysis (CHA) proposed as a counterpart to abstract and applied resp. computational harmonic analysis. This concept constitutes a more integrative approach based on the emphasis of the connections between the different settings in addition to the analogy already provided by the Abstract Harmonic Analysis (AHA) perspective, pointing out the qualitative aspects. While AHA is helpful for the technical differences between the different settings, it is only establishing the analogy between different groups.
The author suggests to view Harmonic Analysis as a natural subfield of functional analysis, dealing with Banach spaces of functions and distributions, with a variety of group actions on and between them. This constitutes a counterpart to the classical point of view of “Modern Harmonic Analysis”, where the role of \(L^{p}\) spaces, maximal functions, among other concepts, is emphasized.
A very nice historical perspective is presented both for the AHA and CHA with the Fourier transform as a key element. Two paths apparently divergent are considered taking into account the Fast Fourier transform (FFT) as a meeting point in both directions. In other words, does the FFT allow to compute a good approximation of the Fourier transform for “nice” functions? What is the connection between the FFT of a sequence of regular samples of a function and the corresponding samples of its Fourier transform? The distributional setting allows to deal with finite signals as periodic and discrete signals, resp. as discrete periodic measures which will converge to a continuous limit in a natural way.
A naive comparison with number systems is presented. By using an axiomatic request based on the Banach Gelfand triple \((\mathbf{S}_{0}, \mathbf{L}^{2}, \mathbf{S}'_{0})\) (G), where \(\mathbf{S}_{0}(G)\) is the Segal algebra associated with a locally compact abelian group \(G\). Three viewpoints appear in such a way at the lower level typically descriptions can be taken literal, the intermediate level allows the preservation of energy norms and scalar products and, finally, the dual space is large enough to include objects like Dirac measures, Dirac combs or pure frequencies. The use of the Banach Gelfand triple is illustrated through the example of the Fourier transform. Fourier inversion and summability as well as the celebrated Poisson formula are also analyzed in the framework of the distributional setting and constitute a proper setting for the otherwise vague concepts using the classical notion of \(w^*\)-convergence in the dual space \(\mathbf{S}'_{0}(G)\).
As a last oriented message to young researchers, the author suggests to explore new territories where computations or simulations involving Fourier methods on a very intuitive and practical way, without reliable and detailed theoretical analysis behind, but where new mathematics are needed and new problems and concepts must be developed.
The lecture of this kind of contributions constitutes a healthful and stimulating exercise for people working in borderlines of pure mathematics, computation and simulation, and applied sciences.
For the entire collection see [Zbl 1304.00050].

MSC:

42C15 General harmonic expansions, frames
42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type

Software:

Matlab
Full Text: DOI

References:

[1] Amidror, I.: Mastering the Discrete Fourier Transform in One, Two or Several Dimensions Pitfalls and Artifacts. Computational Imaging and Vision, vol. 43. Springer, London/Berlin (2013) · Zbl 1277.65119
[2] Argabright, L.N., Gil de Lamadrid, J.: Fourier transforms of unbounded measures. Bull. Amer. Math. Soc. 77, 355-359 (1971) · Zbl 0214.13003
[3] Ash, J.: Studies in Harmonic Analysis. MAA Studies in Mathematics, vol. 13. MAA, Washington, DC (1976) · Zbl 0326.00006
[4] Braun, W.; Feichtinger, H. G., Banach spaces of distributions having two module structures, J. Funct. Anal., 51, 174-212 (1983) · Zbl 0515.46045 · doi:10.1016/0022-1236(83)90025-3
[5] Bruhat, F., Distributions sur un groupe localement compact et applications à l etude des représentations des groupes p-adiques, Bull. Soc. Math. Fr., 89, 43-75 (1961) · Zbl 0128.35701
[6] Carleson, L., On convergence and growth of partial sums of Fourier series, Acta Math., 116, 135-157 (1966) · Zbl 0144.06402 · doi:10.1007/BF02392815
[7] Coifman, R. R.; Weiss, G., Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., 83, 4, 569-645 (1977) · Zbl 0358.30023 · doi:10.1090/S0002-9904-1977-14325-5
[8] Cooley, J.; Lewis, P.; Welch, P., Historical notes on the fast Fourier transform, Proc. IEEE, 55, 10, 1675-1677 (1967) · doi:10.1109/PROC.1967.5959
[9] Cordero, E., Feichtinger, H.G., Luef, F.: Banach Gelfand triples for Gabor analysis. In: Pseudo-differential Operators. Volume 1949 of Lecture Notes in Mathematics, pp. 1-33. Springer, Berlin (2008) · Zbl 1161.35060
[10] de Gosson, M.A., Onchis, D.: Multivariate symplectic Gabor frames with Gaussian windows. J. Fourier Anal. Appl. (2013, submitted)
[11] Deitmar, A., A First Course in Harmonic Analysis (2002), Springer, New York: Universitext, Springer, New York · Zbl 0997.43001 · doi:10.1007/978-1-4757-3834-6
[12] Fefferman, C., Recent progress in classical Fourier analysis. In: Proceedings of the International Congress of Mathematicians 1974, Vancouver, 1, 95-118 (1975) · Zbl 0332.42021
[13] Feichtinger, H. G., On a new Segal algebra, Monatsh. Math., 92, 269-289 (1981) · Zbl 0461.43003 · doi:10.1007/BF01320058
[14] Feichtinger, H.G.: Modulation spaces on locally compact Abelian groups. Technical report (1983)
[15] Feichtinger, H. G., Compactness in translation invariant Banach spaces of distributions and compact multipliers, J. Math. Anal. Appl., 102, 289-327 (1984) · Zbl 0515.46044 · doi:10.1016/0022-247X(84)90173-2
[16] Feichtinger, H. G., Modulation spaces: looking back and ahead, Sampl. Theory Signal Image Process., 5, 2, 109-140 (2006) · Zbl 1156.43300
[17] Feichtinger, H. G.; Gröchenig, K., Banach spaces related to integrable group representations and their atomic decompositions, I. J. Funct. Anal., 86, 2, 307-340 (1989) · Zbl 0691.46011 · doi:10.1016/0022-1236(89)90055-4
[18] Feichtinger, H. G.; Gröchenig, K.; Chui, C. K., Gabor wavelets and the Heisenberg group: Gabor expansions and short time Fourier transform from the group theoretical point of view, Wavelets: A Tutorial in Theory and Applications. Volume 2 of Wavelet Analysis and Its Applications, 359-397 (1992), Boston: Academic, Boston · Zbl 0849.43003 · doi:10.1016/B978-0-12-174590-5.50018-6
[19] Feichtinger, H. G.; Grybos, A.; Onchis, D., Approximate dual Gabor atoms via the adjoint lattice method, Adv. Comput. Math., 40, 3, 651-665 (2014) · Zbl 1309.42043 · doi:10.1007/s10444-013-9324-1
[20] Feichtinger, H. G.; Hörmann, W., Harmonic analysis of generalized stochastic processes on locally compact Abelian groups (1990)
[21] Feichtinger, H. G.; Kaiblinger, N., Varying the time-frequency lattice of Gabor frames, Trans. Amer. Math. Soc., 356, 5, 2001-2023 (2004) · Zbl 1033.42033 · doi:10.1090/S0002-9947-03-03377-4
[22] Feichtinger, H. G.; Kaiblinger, N., Quasi-interpolation in the Fourier algebra, J. Approx. Theory, 144, 1, 103-118 (2007) · Zbl 1108.41006 · doi:10.1016/j.jat.2006.05.001
[23] Feichtinger, H. G.; Kozek, W.; Feichtinger, H. G.; Strohmer, T., Quantization of TF lattice-invariant operators on elementary LCA groups, Gabor Analysis and Algorithms. Applied and Numerical Harmonic Analysis, 233-266 (1998), Boston: Birkhäuser, Boston · Zbl 0890.42012 · doi:10.1007/978-1-4612-2016-9_8
[24] Feichtinger, H. G.; Kozek, W.; Luef, F., Gabor analysis over finite Abelian groups, Appl. Comput. Harmon. Anal., 26, 2, 230-248 (2009) · Zbl 1162.43002 · doi:10.1016/j.acha.2008.04.006
[25] Feichtinger, H.G., Luef, F.: Wiener amalgam spaces for the fundamental identity of Gabor analysis. Collect. Math. 57(Extra Volume (2006)), 233-253 (2006) · Zbl 1135.39303
[26] Feichtinger, H.G., Luef, F., Werther, T.: A guided tour from linear algebra to the foundations of Gabor analysis. In: Gabor and Wavelet Frames. Volume 10 of Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, pp. 1-49. World Scientific, Hackensack (2007) · Zbl 1134.42338
[27] Feichtinger, H. G.; Onchis, D., Constructive realization of dual systems for generators of multi-window spline-type spaces, J. Comput. Appl. Math., 234, 12, 3467-3479 (2010) · Zbl 1196.65036 · doi:10.1016/j.cam.2010.05.010
[28] Feichtinger, H. G.; Zimmermann, G.; Feichtinger, H. G.; Strohmer, T., A Banach space of test functions for Gabor analysis, Gabor Analysis and Algorithms: Theory and Applications, Applied and Numerical Harmonic Analysis, 123-170 (1998), Boston: Birkhäuser, Boston · Zbl 0890.42008 · doi:10.1007/978-1-4612-2016-9_4
[29] Frazier, M.; Jawerth, B., Decomposition of Besov spaces, Indiana Univ. Math. J., 34, 777-799 (1985) · Zbl 0551.46018 · doi:10.1512/iumj.1985.34.34041
[30] Gaudry, G. I., Quasimeasures and operators commuting with convolution, Pacific J. Math., 18, 461-476 (1966) · Zbl 0156.14601 · doi:10.2140/pjm.1966.18.461
[31] Grafakos, L., Classical Fourier Analysis (2008), New York: Springer, New York · Zbl 1220.42001
[32] Gröchenig, K., An uncertainty principle related to the Poisson summation formula, Studia Math., 121, 1, 87-104 (1996) · Zbl 0866.42005
[33] Gröchenig, K., Foundations of Time-Frequency Analysis (2001), Birkhäuser, Boston: Applied and Numerical Harmonic Analysis, Birkhäuser, Boston · Zbl 0966.42020 · doi:10.1007/978-1-4612-0003-1
[34] Hörmander, L.: Linear Partial Differential Operators. 4th Printing. Springer, Berlin/Heidelberg/New York (1976) · Zbl 0321.35001
[35] Hörmander, L., The Weyl calculus of pseudo-differential operators, Commun. Pure Appl. Anal., 32, 359-443 (1979) · Zbl 0388.47032 · doi:10.1002/cpa.3160320304
[36] Hörmander, L.; Balslev, E., Symbolic calculus and differential equations, 8th Scandinavian Congress of Mathematicians 1980, Aarhus. Volume 11 of Progress in Mathematics, 56-81 (1981), Boston: Birkhäuser, Boston · Zbl 0473.35079
[37] Hörmann, W.: Generalized Stochastic Processes and Wigner Distribution. PhD thesis, University of Vienna (1989)
[38] Janssen, A. J.E. M., Gabor representation of generalized functions, J. Math. Anal. Appl., 83, 377-394 (1981) · Zbl 0473.46028 · doi:10.1016/0022-247X(81)90130-X
[39] Kahane, J.-P.; Lemarie Rieusset, P.-G., Remarks on the Poisson summation formula (Remarques sur la formule sommatoire de Poisson), Studia Math., 109, 303-316 (1994) · Zbl 0820.42004
[40] Kaiblinger, N., Approximation of the Fourier transform and the dual Gabor window, J. Fourier Anal. Appl., 11, 1, 25-42 (2005) · Zbl 1064.42022 · doi:10.1007/s00041-004-3070-1
[41] Katznelson, Y.: An Introduction to Harmonic Analysis, 3rd Corr. edn. Cambridge University Press, Cambridge (2004) · Zbl 1055.43001
[42] Larsen, R., An Introduction to the Theory of Multipliers (1971), New York: Springer, New York · Zbl 0213.13301 · doi:10.1007/978-3-642-65030-7
[43] Lighthill, M. J., Introduction to Fourier Analysis and Generalised Functions (1962), Students’ edn: Cambridge University Press, Cambridge, Students’ edn
[44] Losert, V., Segal algebras with functional properties, Monatsh. Math., 96, 209-231 (1983) · Zbl 0518.46039 · doi:10.1007/BF01605489
[45] Luef, F., Projective modules over non-commutative tori are multi-window Gabor frames for modulation spaces, J. Funct. Anal., 257, 6, 1921-1946 (2009) · Zbl 1335.46064 · doi:10.1016/j.jfa.2009.06.001
[46] Luef, F., Projections in noncommutative tori and Gabor frames, Proc. Amer. Math. Soc., 139, 2, 571-582 (2011) · Zbl 1213.42121 · doi:10.1090/S0002-9939-2010-10489-6
[47] Mackey, G., Harmonic analysis as the exploitation of symmetry – a historical survey, Bull. Amer. Math. Soc. New Ser., 3, 543-698 (1980) · Zbl 0437.43001 · doi:10.1090/S0273-0979-1980-14783-7
[48] Mackey, G. W., The Scope and History of Commutative and Noncommutative Harmonic Analysis (1992), Providence: American Mathematical Society, Providence · Zbl 0766.43001
[49] Muscalu, C., Schlag, W.: Classical and Multilinear Harmonic Analysis Volume I. Cambridge Studies in Advanced Mathematics, 137, 387p. Cambridge University Press, Cambridge (2013) · Zbl 1281.42002
[50] Osborne, M. S., On the Schwartz-Bruhat space and the Paley-Wiener theorem for locally compact Abelian groups, J. Funct. Anal., 19, 40-49 (1975) · Zbl 0295.43008 · doi:10.1016/0022-1236(75)90005-1
[51] Reiter, H., Metaplectic Groups and Segal Algebras (1989), Springer, Berlin: Lecture Notes in Mathematics, Springer, Berlin · Zbl 0688.43001
[52] Reiter, H.; Stegeman, J. D., Classical Harmonic Analysis and Locally Compact Groups (2000), Oxford: Clarendon, Oxford · Zbl 0965.43001
[53] Rieffel, M. A., Projective modules over higher-dimensional noncommutative tori, Can. J. Math., 40, 2, 257-338 (1988) · Zbl 0663.46073 · doi:10.4153/CJM-1988-012-9
[54] Schwartz, L.: Théorie des Distributions. (Distribution Theory). Nouveau Tirage, vols. 2, xii, 420 p. FF 230.00. Hermann, Paris (1957)
[55] Stein, E. M., Singular Integrals and Differentiability Properties of Functions (1970), Princeton: Princeton University Press, Princeton · Zbl 0207.13501
[56] Triebel, H.: Theory of Function Spaces. Volume 78 of Monographs in Mathematics. Birkhäuser, Basel (1983) · Zbl 0546.46028
[57] Triebel, H.: Theory of Function Spaces II. Monographs in Mathematics 84. Birkhäuser, Basel (1992)
[58] Voelz, D.: Computational Fourier Optics. A MATLAB Tutorial. SPIE, Tutorial Tex 89 (2011)
[59] Vourdas, A., Harmonic analysis on rational numbers, J. Math. Anal. Appl., 394, 1, 48-60 (2012) · Zbl 1250.43007 · doi:10.1016/j.jmaa.2012.04.059
[60] Wahlberg, P., The random Wigner distribution of Gaussian stochastic processes with covariance in \(\boldsymbol{S}_0(\mathbb{R}^{2d})\), J. Funct. Spaces Appl., 3, 2, 163-181 (2005) · Zbl 1082.60031 · doi:10.1155/2005/252415
[61] Weil, A., L’integration dans les Groupes Topologiques et ses Applications (1940), Paris: Hermann and Cie, Paris · JFM 66.1205.02
[62] Wilder, R., The origin and growth of mathematical concepts, Bull. Amer. Math. Soc., 59, 423-448 (1953) · Zbl 0051.24101 · doi:10.1090/S0002-9904-1953-09717-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.