×

On solving norm equations in global function fields. (English) Zbl 1233.11130

Let \(E/F\) be a finite extension of fields of degree \(d\), where \(F=\mathbb{Q}\) or \(\mathbb{F}_q(t)\) with \(q=p^l\), \(p\) a prime. Let \(\gamma_1, \dots , \gamma_m\) be \(m\) \(F\)-linearly independent elements of \(E\) with \(2\leq m \leq d\) and the norm equation \[ N(x)=c, \] where \(x=x_1 \gamma_1 + \dots + x_m \gamma_m\), \(c, x_i\in o_F\).
The computation of solutions of this equation is well-known when \(m=2\) and \(m=d\), particularly for algebraic number fields. For example, see C. Fieker, A. Jurk and M. Pohst [Math. Comput. 66, No. 217, 399–410 (1997; Zbl 0854.11076)], D. Simon [Math. Comput. 71, No. 239, 1287–1305 (2002; Zbl 0990.11014)], Y. Bilu and G. Hanrot [J. Number Theory 60, No. 2, 373–392 (1996; Zbl 0867.11017)], and I. Gaál and M. Pohst [Exp. Math. 15, No. 1, 1–6 (2006; Zbl 1142.11019)].
In this paper, the authors extend their work done for \(m=3\) to arbitrary \(m\), see [J. Number Theory 130, No. 3, 493–506 (2010; Zbl 1243.11120)]. They develop the theory for computing all solutions of the equation. Moreover, they give a example with \(E=k(t)(\alpha)\), where \(k=\mathbb{F}_5\) and \(\alpha\) is a zero of \(p(z) = z^5-z-t\).

MSC:

11Y50 Computer solution of Diophantine equations
11T71 Algebraic coding theory; cryptography (number-theoretic aspects)
11D57 Multiplicative and norm form equations
94A60 Cryptography
Full Text: DOI

References:

[1] DOI: 10.1006/jnth.1996.0129 · Zbl 0867.11017 · doi:10.1006/jnth.1996.0129
[2] DOI: 10.1006/jsco.1996.0126 · Zbl 0886.11070 · doi:10.1006/jsco.1996.0126
[3] DOI: 10.1090/S0025-5718-97-00761-8 · Zbl 0854.11076 · doi:10.1090/S0025-5718-97-00761-8
[4] DOI: 10.1016/j.jnt.2005.10.009 · Zbl 1157.11011 · doi:10.1016/j.jnt.2005.10.009
[5] Exp. Math. 15 pp 1– (2006)
[6] DOI: 10.1016/j.jsc.2005.03.003 · Zbl 1156.11347 · doi:10.1016/j.jsc.2005.03.003
[7] DOI: 10.1090/S0025-5718-02-01309-1 · Zbl 0990.11014 · doi:10.1090/S0025-5718-02-01309-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.