×

GMC/GEL estimation of stochastic volatility models. (English) Zbl 1385.62033

Summary: In this article we discuss the estimation of stochastic volatility (SV) using generalized empirical likelihood/minimum contrast methods based on moment conditions models. We show via Monte Carlo simulations that the proposed methods have superior or equivalent performance to the other alternative methods, and, additionally, they offer robustness properties in the presence of heavy-tailed distributions and outliers.

MSC:

62P20 Applications of statistics to economics
62G05 Nonparametric estimation
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
91B84 Economic time series analysis
Full Text: DOI

References:

[1] Anatolyev, S. (2005). GMM, GEL, serial correlation and asymptotic bias. Econometrica 73:983-1002. · Zbl 1152.62360
[2] Anatolyev, S., Gospodinov, N. (2011). Methods for Estimation and Inference in Modern Econometrics. Bocaraton, FL: Chapman and Hall/CRC. · Zbl 1233.62203
[3] Andersen, T., Sorensen, B. (1996). GMM estimation of a stochastic volatility model: A Monte Carlo study. Journal of Business and Economic Statistics 14(3):328-352.
[4] Andersen, T. G., Chung, H.-J., Sørensen, B. E. (1999). Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study. Journal of Econometrics 91(1):61-87. · Zbl 0937.62105
[5] Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 59:817-858. · Zbl 0732.62052
[6] Bickel, P., Klassen, C., Ritov, Y., Wellner, J. (1993). Efficient and Adaptative Estimation for Semiparametric Models. Baltimore, MD: Johns Hopkins Press. · Zbl 0786.62001
[7] Broto, C., Ruiz, E. (2004). Estimation methods for stochastic volatility methods: A survey. Journal of Economic Surveys 18(5):613-649.
[8] Francq, C., Zakoian, J. M. (2006). Linear-representation bases estimation of stochastic volatility models. Scandinavian Journal of Statistics 33:785-806. · Zbl 1164.62379
[9] Hampel, F. R., Ronchetti, E. M., Rousseeuw, P., Stahel, W. A. (1986). Robust Statistics: The Approach Based on Influence Functions. Hoboken, NJ: John Wiley & Sons. · Zbl 0593.62027
[10] Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica 50:1029-1054. · Zbl 0502.62098
[11] Hansen, L. P., Heaton, J., Yaron, A. (1996). Finite sample properties of some alternative GMM estimators. Journal of Business and Economic Statistics 14:262-280.
[12] Harvey, A. C., Ruiz, E., Shephard, N. G. (1994). Multivariate stochastic variance models. Review of Economic Studies 61:247-264. · Zbl 0805.90026
[13] Hotta, L. K., Tsay, R. (2012). In Bell, W. R., Holan, S. H., McElroy, T. S., eds., Economic Time Series: Modeling and Seasonality, chapter Outliers in GARCH Processes. Bocaraton, FL: Chapman & Hall CRC Press, pp. 337-358. · Zbl 1260.91195
[14] Huber, P. J. (1981). Robust Statistics. Hoboken, NJ: John Wiley & Sons. · Zbl 0536.62025
[15] Imbens, G. W., Spady, R. H., Johnson, P. (1998). Information theoretic approaches to inference in moment conditions models. Econometrica 66:333-357. · Zbl 1055.62512
[16] Jacquier, E., Polson, N., Rossi, P. E. (1994). Bayesian analysis of stochastic volatilty models (with discussions). Journal of Business and Economic Statistics 12:371-314.
[17] Kiefer, J., Wolfowitz, J. (1956). Consistency of maximum likelihood estimator in the presence of infinitely many parameters. Annals of Mathematical Statistics 27:887-906. · Zbl 0073.14701
[18] Kitamura, Y. (1997). Empirical likelihood methods with weakly dependent processes. Annals of Statistics 25:2084-2102. · Zbl 0881.62095
[19] Kitamura, Y. (2006). Empirical likelihood methods in econometrics: Theory and practice. Cowles Foundation Discussion Paper (1569). · Zbl 1131.62106
[20] Kitamura, Y., Stutzer, M. (1997). An information-theoretic alternative to generalized method of moments estimation. Econometrica 65(5):861-874. · Zbl 0894.62011
[21] Laurini, M. P., Hotta, L. K. (2016). Generalized moment estimation of stochastic differential equations. Computational Statistics 31:1169-1202. · Zbl 1347.65021
[22] Liesenfeld, R., Richard, J. (2003). Univariate and multivariate stochastic volatility models: Estimation and diagnostics. Journal of Empirical Finance 10:505-531.
[23] Melino, A., Turnbull, S. M. (1990). Pricing foreign currency options with stochastic volatility. Journal of Econometrics 45:239-265. · Zbl 1126.91374
[24] Newey, W., Smith, R. J. (2004). High-order properties of GMM and generalized empirical likelihood estimators. Econometrica 72:219-255. · Zbl 1151.62313
[25] Newey, W. K., West, K. D. (1987). A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55:703-708. · Zbl 0658.62139
[26] Qin, J., Lawless, J. (1994). Empirical likelihood and general estimating equations. The Annals of Statistics 20(1):300-325. · Zbl 0799.62049
[27] Renault, E. (2009). Moment-based estimation of stochastic volatility models. In: Andersen, T., Davis, R., Kreib, J.-P., Mikosch, T., eds., Handbook of Financial Time Series. New York: Springer, pp. 269-311. · Zbl 1179.62153
[28] Schennach, S. (2007). Point estimation with exponentially tilted empirical likelihood. Annals of Statistics 35(2):634-672. · Zbl 1117.62024
[29] Shephard, N., Andersen, T. (2009). Stochastic volatility: Origins and overview. In: Andersen, T. G., Davis, R. A., Kreib, J.-P., Mikosch, T., eds., Handbook of Financial Time Series. New York: Springer, pp. 233-254. · Zbl 1178.91233
[30] Smith, R. J. (1997). Alternative semi-parametric likelihood approaches to generalised method of moments estimation. Economic Journal 107(441):503-519.
[31] Takada, T. (2009). Simulated minimum Hellinger distance estimation of stochastic volatility models. Computational Statistics and Data Analysis 53:2390-2403. · Zbl 1453.62211
[32] Taylor, S. J. (1986). Modelling Financial Time Series. Hoboken, NJ: John Wiley & Sons. · Zbl 1130.91345
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.