×

Krein’s theorem for the dissipative operators with finite impulsive effects. (English) Zbl 1329.34060

The authors treat singular dissipative operators with finite impulsive conditions of the form \[ T y(x) = w^{-1}(x)\left[-(p(x)y')' + q(x)y\right], \] \(x \in \Lambda = (c_0,c_{n+1})\setminus\{c_1,\ldots,c_n\}\), where \(-\infty < c_0 < c_1 < \ldots < c_{n+1} \leq \infty\), \(p\), \(q\), \(w\) are real-valued Lebesgue measurable functions, \(p^{-1}\), \(q\) can be singular at \(c_i\), \(i=0,\ldots,n+1\). The domain of the operator \(T\) is the set of functions satisfying certain boundary and impulsive conditions (at fixed times \(c_i\)) on \(\Lambda\).
From the abstract: After passing to the inverse operators, it is obtained that imaginary parts of the inverse operators are nuclear. Finally, using Krein’s theorem, it is proved that all root vectors of the singular dissipative operators with finite impulsive conditions are complete in the Hilbert space.

MSC:

34B37 Boundary value problems with impulses for ordinary differential equations
34B20 Weyl theory and its generalizations for ordinary differential equations
34B24 Sturm-Liouville theory
34L10 Eigenfunctions, eigenfunction expansions, completeness of eigenfunctions of ordinary differential operators
47E05 General theory of ordinary differential operators
Full Text: DOI

References:

[1] DOI: 10.1142/0906 · doi:10.1142/0906
[2] DOI: 10.1016/j.amc.2003.08.039 · Zbl 1060.34007 · doi:10.1016/j.amc.2003.08.039
[3] DOI: 10.1007/s11202-005-0069-z · doi:10.1007/s11202-005-0069-z
[4] DOI: 10.1007/s10114-005-0751-x · Zbl 1112.34070 · doi:10.1007/s10114-005-0751-x
[5] DOI: 10.1002/mma.867 · Zbl 1146.34061 · doi:10.1002/mma.867
[6] Kadakal M., CAMWA 54 (2007)
[7] DOI: 10.1016/j.amc.2011.05.033 · Zbl 1242.34042 · doi:10.1016/j.amc.2011.05.033
[8] Ao J.-J., CAMWA 63 (8) pp 1335– (2012)
[9] DOI: 10.1007/s11785-011-0180-z · Zbl 1425.34100 · doi:10.1007/s11785-011-0180-z
[10] DOI: 10.1016/j.amc.2012.02.079 · Zbl 1298.34163 · doi:10.1016/j.amc.2012.02.079
[11] Gohberg I. C., Introduction to the Theory of Linear Nonselfadjoint Operators (1969) · Zbl 0181.13503
[12] DOI: 10.1016/j.jmaa.2012.04.071 · Zbl 1254.34043 · doi:10.1016/j.jmaa.2012.04.071
[13] Krein M. G., Izv. Akad. Nauk SSSR Ser. Mat. 16 (4) pp 293– (1952)
[14] DOI: 10.1017/S0308210500018874 · Zbl 0635.34021 · doi:10.1017/S0308210500018874
[15] DOI: 10.1093/qmath/35.4.415 · Zbl 0558.34030 · doi:10.1093/qmath/35.4.415
[16] Naimark M. A., Linear Differential Operators. 2nd ed. (1969) · Zbl 0219.34001
[17] Atkinson F. V., Discrete and Continuous Boundary Problems (1964) · Zbl 0117.05806
[18] Fulton C. T., Trans. Amer. Math. Soc. 229 pp 51– (1977)
[19] Zettl A., Sturm-Liouville Theory. Mathematical Surveys and Monographs, Vol. 121 (2005)
[20] Titchmarsh E. C., Eigenfunctions Expansions Associated with Second-Order Differential Equations (1962) · Zbl 0099.05201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.