×

Boundary element method to estimate the time-varying interfacial boundary in horizontal immiscible liquids flow using electrical resistance tomography. (English) Zbl 1446.76033

Summary: Flow of immiscible liquids through horizontal pipe is observed in many industrial process applications. The flow is mainly characterized by its flow regime, relative phase velocities, liquid fraction and water holdup. Electrical resistance tomography (ERT) that provides a cross-sectional image of flow distribution is helpful in monitoring the process. In this paper, the moving interfacial boundary between the immiscible liquids of stratified flow is estimated based on the measured voltages on the pipe surface. Determining the time-varying shape and location of the interfacial boundary has a practical significance. It gives us the cross-sectional liquid fraction which is a key parameter to analyze the hydrodynamic properties of flow. The interfacial boundary shape and location is parameterized with discrete front points and the forward solution is formulated using analytical boundary element method (BEM). The analytic formulation of BEM is simple with less number of unknowns therefore it is computationally efficient. Moreover, BEM discretizes the boundaries alone and is therefore appropriate choice for interfacial boundary estimation. To estimate the time-varying boundary, conventional methods that assume no change in flow distribution within the measurement time of full frame of voltage data are inadequate. Dynamic imaging methods that use one or few sets of data can improve the temporal resolution and hence they are more accurate and practical in realistic situations. Inverse problem is treated as a state estimation problem where the front points are considered as state variables and are estimated using extended Kalman filter. Numerical simulations and phantom experiments are performed to validate the performance of the proposed method.

MSC:

76-10 Mathematical modeling or simulation for problems pertaining to fluid mechanics
65N38 Boundary element methods for boundary value problems involving PDEs
92C55 Biomedical imaging and signal processing
Full Text: DOI

References:

[1] Angeli, P.; Hewitt, G. F., Flow structure in horizontal oil-water flow, Int. J. Multiph. Flow., 26, 1117-1140 (2000) · Zbl 1137.76518
[2] Fairuzov, Y. V., Numerical Simulation of Transient Flow of Two Immiscible Liquids in Pipeline, Am. Inst. Chem. Eng. J., 46, 1332-1339 (2000)
[3] Brauner, N.; Moalem Maron, D., Flow pattern transitions in two phase liquid-liquid flow in horizontal tubes, Int. J. Multiph. Flow., 18, 123-140 (1992) · Zbl 1144.76355
[4] Holand, F. A.; Bragg, R., Fluid Flow for Chemical Engineers (1995), Edward Arnold Publisher: Edward Arnold Publisher London
[5] Fransolet, E.; Crine, M.; Marchot, P.; Toye, D., Analysis of gas holdup in bubble columns with non-Newtonian fluid using electrical resistance tomography and dynamic gas disengagement technique, Chem. Eng. Sci., 60, 6118-6123 (2005)
[6] Webster, J. G., Electrical Impedance Tomography (1990), Adam Hilger: Adam Hilger Bristol
[7] Han, D. K.; Prosperetti, A., A shape decomposition technique in electrical impedance tomography, J. Comput. Phys., 155, 75-95 (1999) · Zbl 0986.92020
[8] Kolehmainen, V.; Voutilainen, A.; Kaipio, J. P., Estimation of non-stationary region boundaries in EIT - State estimation approach, Inverse Probl., 17, 1937-1956 (2001) · Zbl 0991.35109
[9] Tossavainen, O-P.; Vauhkonen, M.; Heikkinen, L. M.; Savolainen, T., Estimating shape and free surfaces with electrical impedance tomography, Meas. Sci. Technol., 15, 1402-1411 (2004)
[10] Chung, E. T.; Chan, T. F.; Tai, X. C., Electrical impedance tomography using level set representation and total variational regularization, J. Comput. Phys., 205, 357-372 (2005) · Zbl 1072.65143
[11] Kim, M. C.; Kim, S.; Kim, K. Y.; Seo, K. H.; Jeon, H. J.; Kim, J. H.; Choi, B. Y., Estimation of phase boundary by front points method in electrical impedance tomography, Inverse Probl. Sci. Eng., 14, 455-466 (2006) · Zbl 1107.78008
[12] Khambampati, A. K.; Ijaz, U. Z.; Lee, J. S.; Kim, S.; Kim, K. Y., Phase boundary estimation in electrical impedance tomography using Hooke and Jeeves pattern search method, Meas. Sci. Technol., 21, 035501 (2010)
[13] Kolehmainen, V.; Arridge, S. R.; Lionheart, W. R.B.; Vauhkonen, M.; Kaipio, J. P., Recovery of region boundaries of piecewise constant coefficients of elliptic PDE from boundary data, Inverse Probl., 15, 1375-1391 (1999) · Zbl 0936.35195
[14] Tossavainen, O-P.; Vauhkonen, M.; Kolehmainen, V., A three dimensional shape estimation approach for tracking of phase interfaces in sedimentation processes using electrical impedance tomography, Meas. Sci. Technol., 18, 1413-1424 (2007)
[15] Butler, J. E.; Bonnecaze, R. T., Inverse method for imaging a free surface using electrical impedance tomography, Chem. Eng. Sci., 55, 1193-1204 (2000)
[16] Kim, S.; Ijaz, U. Z.; Khambampati, A. K.; Kim, K. Y.; Kim, M. C.; Chung, S. I., Moving interfacial boundary estimation in stratified flows of two immiscible liquids using electrical resistance tomography, Meas. Sci. Technol., 18, 1257-1269 (2007)
[17] Tossavainen, O‐P.; Vauhkonen, M.; Kolehmainen, V.; Kim, K. Y., Tracking of moving interfaces in sedimentation processes using electrical impedance tomography, Chem. Eng. Sci., 61, 7717-7729 (2006)
[18] Wang, R.; Lee, B. A.; Lee, J. S.; Kim, K. Y.; Kim, S., Analytical estimation of liquid film thickness in two-phase annular flow using electrical resistance measurement, Appl. Math. Model., 36, 2833-2840 (2012) · Zbl 1252.76011
[19] Duraiswami, R.; Sarkar, K.; Chahine, G. L., Boundary element techniques for efficient 2-D and 3-D electrical impedance tomography, Chem. Eng. Sci., 52, 2185-2196 (1997)
[20] Duraiswami, R.; Sarkar, K.; Chahine, G. L., Efficient 2D and 3D electrical impedance tomography using dual reciprocity boundary element techniques, Eng. Anal. Bound. Elem., 22, 13-31 (1998) · Zbl 0936.78008
[21] Tarvainen, M.; Vaukhonen, M.; Savolainen, T.; Kaipio, J. P., Boundary element method and internal electrodes in electrical impedance tomography, Int. J. Numer. Meth. Eng., 50, 809-824 (2001) · Zbl 0980.92500
[22] Marin, L.; Elliott, L.; Ingham, D. B.; Lesnic, D., The boundary element method for the numerical recovery of a circular inhomogeneity in an elliptic equation, Eng. Anal. Bound. Elem., 28, 413-419 (2004) · Zbl 1074.65126
[23] Tanaka, M.; Masuda, Y., Boundary element method applied to some inverse problems, Eng. Anal. Bound. Elem., 3, 138-143 (1986)
[24] Aykroyd, R. G.; Cattle, B. A., A boundary element approach for the complete electrode model of EIT illustrated using simulated and real data, Inverse Probl., 15, 441-461 (2007) · Zbl 1202.78030
[25] Xu, Y.; Dong, F.; Tan, C., Electrical resistance tomography for locating inclusions using analytical boundary element integrals and their partial derivatives, Eng. Anal. Bound. Elem., 34, 876-883 (2010) · Zbl 1244.78035
[26] Khambampati, A. K.; Lee, B. A.; Kim, K. Y.; Kim, S., An analytical boundary element integral approach to track the boundary of a moving cavity using electrical impedance tomography, Meas. Sci. Technol., 23, 035401 (2012)
[27] Ren, S.; Dong, F.; Tan, C.; Xu, Y., A boundary element approach to estimate the free surface in stratified two-phase flow, Meas. Sci. Technol., 23, 105401 (2012)
[28] Khambampati, A. K.; Hong, Y. J.; Kim, K. Y.; Kim, S., Estimation of open boundary between two immiscible liquids using analytical boundary element integral approach, Chem. Eng. Sci., 95, 161-173 (2013)
[29] Cheng, K. S.; Isaacson, D.; Newell, J. C.; Gisser, D. G., Electrode models for electric current computed tomography, IEEE Trans. Biomed. Eng., 36, 918-924 (1989)
[30] Somersalo, E.; Cheney, M.; Isaacson, D., Existence and uniqueness for electrode models for electric current computed tomography, SIAM J. Appl. Math., 52, 1023-1040 (1992) · Zbl 0759.35055
[31] Ang, W. T., A Beginner’s Course in Boundary Element Methods (2007), Universal-Publishers
[32] Fratantonio, M.; Rencis, JJ., Exact boundary element integrations for two dimensional Laplace equation, Eng. Anal. Bound. Elem., 24, 325-342 (2000) · Zbl 0959.65134
[33] Tang, W.; Fenner, R., Analytical integral algorithm applied to boundary layer effect and thin body effect in BEM for anisotropic potential problems, Appl. Math. Model., 29, 1073-1099 (2005) · Zbl 1153.74050
[34] Brebbia, C. A.; Dominguez, J., Boundary Elements, An Introductory Course (1992), Comp. Mech. Publicatons and Mc Graw-Hill Book Co.: Comp. Mech. Publicatons and Mc Graw-Hill Book Co. Southampton and Boston · Zbl 0780.73002
[35] Zhang, X.; Zhang, X., Exact integration in the boundary element method for two-dimensional elastostatic problems, Eng. Anal. Bound. Elem., 27, 987-997 (2003) · Zbl 1045.74612
[36] Dehghan, M.; Hosseinzadeh, H., Calculation of 2D singular and near singular integrals of boundary elements method based on the complex space, Appl. Math. Model., 36, 545-560 (2012) · Zbl 1236.65148
[37] Kim, K. Y.; Kim, B. S.; Kim, M. C.; Lee, Y. J.; Vauhkonen, M., Image reconstruction in time varying electrical impedance tomography based on the extended Kalman filter, Meas. Sci. Technol., 12, 1032-1039 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.