×

Semiclassical singularities propagation property for Schrödinger equations. (English) Zbl 1176.35045

The author considers Schrödinger equations with variable coefficients, which are long-range type perturbations of the flat Laplacian on \(\mathbb{R}^n\). Let \(H\) be a Schrödinger operator \[ H= -{1\over 2} \sum^n_{j,k=1} \partial_{x_j} a_{jk}(x) \partial_{x_k}+ V(x), \] on \(L^2(\mathbb{R}^n)\), where \(n\geq 1\) and \(a_{jk}(x)\) and \(V(x)\) are real-valued \(C^\infty\)-class functions and satisfy \[ |\partial^\alpha_x(a(x)- \delta_{jk})|\leq C_\alpha\langle x\rangle^{-\mu-|\alpha|}, \]
\[ |\partial^\alpha_x V(x)|\leq C_\alpha\langle x\rangle^{2-\mu-|\alpha|}, \] for \(x\in\mathbb{R}^n\), \(\alpha\in Z^n_+\). Denote \[ k(x,\xi)= {1\over 2}\sum^n_{j,k= 1} a_{jk}(x)\xi_j\xi_k,\;p(x,\xi)= k(x,\xi)+ V(x),\;x,\xi\in\mathbb{R}^n. \] Let \(\exp t_Hp(x_0,\xi_0)\) denote the Hamilton flow generated by the symbol \(p\) with the initial data \((x_0,\xi_0)\). For \((x_0,\xi_0)\in \mathbb{R}^{2n}\) denote \((\widetilde y(t),\widetilde\eta(t))= \exp tH_p(x_0,\xi_0)\). \((x_0,\xi_0)\) is called backward nontrapping if \(|\widetilde\eta(t)|\to \infty\) as \(t\to-\infty\). Let \(u(t)= e^{-tH}u_0\), \(u_0\in L^2(\mathbb{R}^n)\) and \(t_0> 0\). Assume that \((x_0,\xi_0)\) is backward nontrapping. The author proved that \((x_0,\xi_0)\) is not in \(WF(u(t_0))\) if and only if there is \(a(x,\xi)\in C^\infty_0(\mathbb{R}^{2n})\) such that \((a(x_0,\xi_0)\neq 0\) and \[ \| (a_h\circ\exp t_0 H_p)(x, D)u_0\|_{L^2(\mathbb{R}^n)}= 0(h^\infty),\quad h\to 0, \] where \(a_h(x, D)= a(x,hD)\).

MSC:

35B65 Smoothness and regularity of solutions to PDEs
35P25 Scattering theory for PDEs
35A27 Microlocal methods and methods of sheaf theory and homological algebra applied to PDEs

References:

[1] J.-M. Bouclet and N. Tzvetkov, Strichartz estimates for long range perturbations, American J. Math., 129 (2007), 1565-1609. · Zbl 1154.35077 · doi:10.1353/ajm.2007.0039
[2] L. Boutet de Monvel, Propagation des singularités des solutions d’equation de Schrödinger, Fourier integral operators and partial differential equations, Lecture Notes in Math., Springer, 459 , 1975. · Zbl 0305.35088 · doi:10.1007/BFb0074189
[3] N. Burq, P. Gérard and N. Tzvetkov, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, American J. Math., 126 (2004), 569-605. · Zbl 1067.58027 · doi:10.1353/ajm.2004.0016
[4] W. Craig, T. Kappeler and W. Strauss, Microlocal dispersive smoothing for the Schrödinger equation, Comm. Pure Appl. Math., 48 (1996), 769-860. · Zbl 0856.35106 · doi:10.1002/cpa.3160480802
[5] M. Dimassi and J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit, London Math. Soc. Lecture Note Ser., 268 , 1999. · Zbl 0926.35002
[6] S. Doi, Singularities of solutions of Schrödinger equations for perturbed harmonic oscillators, Hyperbolic problems and related topics, Grad. Ser. Anal., Int. Press, Somerville, MA, 2003, pp.,185-199. · Zbl 1047.35007
[7] S. Doi, Smoothness of solutions for Schrödinger equations with unbounded potentials, Publ. Res. Inst. Math. Sci., 41 (2005), 175-221. · Zbl 1082.35054 · doi:10.2977/prims/1145475408
[8] A. Hassel and J. Wunsch, The Schrödinger propagator for scattering metrics, Ann. Math., 162 (2005), 487-523. JSTOR: · Zbl 1126.58016 · doi:10.4007/annals.2005.162.487
[9] L. Hörmander, The existence of wave operators in scattering theory, Math. Zeitschrift, 146 (1976), 69-91. · Zbl 0319.35059 · doi:10.1007/BF01213717
[10] L. Hörmander, Analysis of Linear Partial Differential Operators, I -IV, Springer-Verlag, 1983-1985.
[11] K. Ito, Propagation of singularities for Schrödinger equations on the Euclidean space with a scattering metric, Comm. Partial Differential Equations, 31 (2006), 1735-1777. · Zbl 1117.35005 · doi:10.1080/03605300500455917
[12] L. Kapitanski, I. Rodnianski and K. Yajima, On the fundamental solution of a perturbed harmonic oscillator, Topol. Methods Nonlinear Anal., 9 (1997), 77-106. · Zbl 0892.35035
[13] R. Lascar, Propagation des singularités des solutions d’équations pseudo-differentialles quasi-homogenes, Ann. Inst. Fourier (Grenoble), 27 (1977), 79-123. · Zbl 0349.35079 · doi:10.5802/aif.652
[14] A. Martinez, An Introduction to Semiclassical and Microlocal Analysis, Universitext, Springer-Verlag, 2002. · Zbl 0994.35003
[15] A. Martinez, S. Nakamura and V. Sordoni, Analytic smoothing effect for the Schrödinger equation with long-range perturbation, Comm. Pure Appl. Math., 59 (2006), 1330-1351. · Zbl 1122.35027 · doi:10.1002/cpa.20112
[16] S. Nakamura, Propagation of the homogeneous wave front set for Schrödinger equations, Duke Math. J., 126 (2005), 349-367. · Zbl 1130.35023 · doi:10.1215/S0012-7094-04-12625-9
[17] S. Nakamura, Wave front set for solutions to Schrödinger equations, J. Functional Analysis · Zbl 1155.35014 · doi:10.1016/j.jfa.2008.06.007
[18] M. Reed and B. Simon, The Methods of Modern Mathematical Physics, I -IV, Academic Press, 1972-1980. · Zbl 0459.46001
[19] L. Robbiano and C. Zuily, Microlocal analytic smoothing effect for the Schrödinger equation, Duke Math. J., 100 (1999), 93-129. · Zbl 0941.35014 · doi:10.1215/S0012-7094-99-10003-2
[20] L. Robbiano and C. Zuily, Analytic theory for the quadratic scattering wave front set and application to the Schrödinger equation, Astérisque, 283 (2002), 1-128. · Zbl 1029.35001
[21] L. Robbiano and C. Zuily, Strichartz estimates for Schrödinger equations with variable coefficients, Mém. Soc. Math. Fr. (N.S.), 101 -102 (2005), 1-208. · Zbl 1097.35002
[22] G. Staffilani and D. Tataru, Strichartz estimates for a Schrödinger operator with non smooth coefficients, Comm. Partial Differential Equations, 27 (2002), 1337-1372. · Zbl 1010.35015 · doi:10.1081/PDE-120005841
[23] J. Wunsch, Propagation of singularities and growth for Schrödinger operators, Duke Math. J., 98 (1999), 137-186. · Zbl 0953.35121 · doi:10.1215/S0012-7094-99-09804-6
[24] K. Yajima, Smoothness and non-smoothness of the fundamental solution of time dependent Schrödinger equations, Comm. Math. Phys., 181 (1996), 605-629. · Zbl 0883.35022 · doi:10.1007/BF02101289
[25] M. Yamazaki, On the microlocal smoothing effect of dispersive partial differential equations I: second order linear equations, Algebraic Analysis, II , Academic Press, 1988, pp.,911-926. · Zbl 0683.35010
[26] S. Zelditch, Reconstruction of singularities for solutions of Schrödinger’s equation, Comm. Math. Phys., 90 (1983), 1-26. · Zbl 0554.35031 · doi:10.1007/BF01209385
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.