×

Remarks on the fundamental solution to Schrödinger equation with variable coefficients. (English. French summary) Zbl 1251.35102

Summary: We consider Schrödinger operators \(H\) on \(\mathbb R^n\) with variable coefficients. Let \(H_0=-\frac12\Delta\) be the free Schrödinger operator and we suppose \(H\) is a “short-range” perturbation of \(H_0\). Then, under the nontrapping condition, we show that the time evolution operator: \(e^{-itH}\) can be written as a product of the free evolution operator \(e^{-itH_0}\) and a Fourier integral operator \(W(t)\) which is associated to the canonical relation given by the classical mechanical scattering. We also prove a similar result for the wave operators. These results are analogous to results by A. Hassell and J. Wunsch [in: Partial differential equations and inverse problems. Proceedings of the Pan-American Advanced Studies Institute on partial differential equations, nonlinear analysis and inverse problems, Santiago, Chile, January 6–18, 2003. Providence, RI: American Mathematical Society (AMS). Contemporary Mathematics 362, 199–209 (2004; Zbl 1062.35098)], but the assumptions, the proof and the formulation of results are considerably different. The proof employs an Egorov-type theorem similar to those used in previous works by the authors combined with a Beals-type characterization of Fourier integral operators.

MSC:

35Q41 Time-dependent Schrödinger equations and Dirac equations
35P25 Scattering theory for PDEs
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics

Citations:

Zbl 1062.35098

References:

[1] Craig, Walter; Kappeler, Thomas; Strauss, Walter, Microlocal dispersive smoothing for the Schrödinger equation, Comm. Pure Appl. Math., 48, 8, 769-860 (1995) · Zbl 0856.35106 · doi:10.1002/cpa.3160480802
[2] Fujiwara, Daisuke, Remarks on convergence of the Feynman path integrals, Duke Math. J., 47, 3, 559-600 (1980) · Zbl 0457.35026 · doi:10.1215/S0012-7094-80-04734-1
[3] Hassell, Andrew; Wunsch, Jared, Partial differential equations and inverse problems, 362, 199-209 (2004) · Zbl 1062.35098
[4] Hassell, Andrew; Wunsch, Jared, The Schrödinger propagator for scattering metrics, Ann. of Math. (2), 162, 1, 487-523 (2005) · Zbl 1126.58016 · doi:10.4007/annals.2005.162.487
[5] Hörmander, Lars, Fourier integral operators. I, Acta Math., 127, 1-2, 79-183 (1971) · Zbl 0212.46601 · doi:10.1007/BF02392052
[6] Hörmander, Lars, The analysis of linear partial differential operators. I-IV (19831985) · Zbl 0521.35001
[7] Ito, Kenichi, Propagation of singularities for Schrödinger equations on the Euclidean space with a scattering metric, Comm. Partial Differential Equations, 31, 10-12, 1735-1777 (2006) · Zbl 1117.35005 · doi:10.1080/03605300500455917
[8] Ito, Kenichi; Nakamura, Shu, Singularities of solutions to the Schrödinger equation on scattering manifold, Amer. J. Math., 131, 6, 1835-1865 (2009) · Zbl 1186.35004 · doi:10.1353/ajm.0.0087
[9] Kapitanski, L.; Safarov, Yu., Differential operators and spectral theory, 189, 139-148 (1999) · Zbl 0922.35144
[10] Martinez, André; Nakamura, Shu; Sordoni, Vania, Analytic smoothing effect for the Schrödinger equation with long-range perturbation, Comm. Pure Appl. Math., 59, 9, 1330-1351 (2006) · Zbl 1122.35027 · doi:10.1002/cpa.20112
[11] Martinez, André; Nakamura, Shu; Sordoni, Vania, Analytic wave front set for solutions to Schrödinger equations, Adv. Math., 222, 4, 1277-1307 (2009) · Zbl 1180.35016 · doi:10.1016/j.aim.2009.06.002
[12] Nakamura, Shu, Propagation of the homogeneous wave front set for Schrödinger equations, Duke Math. J., 126, 2, 349-367 (2005) · Zbl 1130.35023 · doi:10.1215/S0012-7094-04-12625-9
[13] Nakamura, Shu, Semiclassical singularities propagation property for Schrödinger equations, J. Math. Soc. Japan, 61, 1, 177-211 (2009) · Zbl 1176.35045 · doi:10.2969/jmsj/06110177
[14] Nakamura, Shu, Wave front set for solutions to Schrödinger equations, J. Funct. Anal., 256, 4, 1299-1309 (2009) · Zbl 1155.35014 · doi:10.1016/j.jfa.2008.06.007
[15] Robbiano, Luc; Zuily, Claude, Microlocal analytic smoothing effect for the Schrödinger equation, Duke Math. J., 100, 1, 93-129 (1999) · Zbl 0941.35014 · doi:10.1215/S0012-7094-99-10003-2
[16] Sogge, Christopher D., Fourier integrals in classical analysis, 105 (1993) · Zbl 0783.35001 · doi:10.1017/CBO9780511530029
[17] Wunsch, Jared, Propagation of singularities and growth for Schrödinger operators, Duke Math. J., 98, 1, 137-186 (1999) · Zbl 0953.35121 · doi:10.1215/S0012-7094-99-09804-6
[18] Yajima, Kenji, Smoothness and non-smoothness of the fundamental solution of time dependent Schrödinger equations, Comm. Math. Phys., 181, 3, 605-629 (1996) · Zbl 0883.35022 · doi:10.1007/BF02101289
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.