×

Propagation of singularities for Schrödinger equations on the Euclidean space with a scattering metric. (English) Zbl 1117.35005

The author considers the Schrödinger equation corresponding to the scattering metric on the Euclidean space and study the propagation of singularities for the solution in terms of the homogeneous wavefront set. Let \(X= S^n_+\) and \(x= z^{-1}\) for \(z\in\mathbb{R}^n\setminus\{0\}\) define a boundary defining function of \(X\) and a scattering metric on \(X\) which is expressed near the boundary as \(g= {dx^2\over x^4}+ {h\over x^2}\), where \(h\) is a Riemannian metric on \(\partial X\). Consider the Schrödinger operator \[ H= -{1\over 2\sqrt{g}} \sum^n_{j,k=1} \partial_j g^{jk}\sqrt{g}\partial_k +V. \] Assume that \(V\) is a smooth real-valued function on \(\mathbb{R}^n\) and satisfies \(|\partial^\alpha V(z)|\leq C_\alpha\langle z\rangle^{\nu-|\alpha|}\), \(\alpha\in\mathbb{Z}^n_+\) uniformly in \(z\in\mathbb{R}^n\), where \({3\over 2}\leq\nu< 2\). Define the homogeneous wavefront set (respectively, usual wavefont set) as follows; for \(S'(\mathbb{R}^n)\) and \((z_0,\zeta_0)\in T^*\setminus\{0\}\) \((z_0,\zeta_0)\not\in HWF(u)\) (respectively, \(WF(u)\)), if there exists \(\phi\in C^\infty_0(\mathbb{R}^{2n})\) such that \(\phi(z_0,\zeta_0)\neq 0\) and that \(\|\phi^w(hz, hD)u\|_{L^2}= O(h^\infty)\) (respectively \(\|\phi^w(z, hD)u\|_{L^2}= O(h^\infty)\)). Let \(u_0\in L^2(\mathbb{R}^n)\) and assume \((z_0,\zeta_0)\in T^*\setminus\{0\}\) is backward nontrapping and denote by \(\omega_-\) a backward limiting direction. Then the author proved that there exists \(t_0> 0\) such that \((-t_0\omega_-, \omega_-)\not\in HWF(u_0)\), \((z_0,\zeta_0)\not\in WF(e^{-it_0 H}u_0)\).

MSC:

35A21 Singularity in context of PDEs
35B65 Smoothness and regularity of solutions to PDEs
35J10 Schrödinger operator, Schrödinger equation
58J47 Propagation of singularities; initial value problems on manifolds
35A18 Wave front sets in context of PDEs
Full Text: DOI

References:

[1] DOI: 10.1002/cpa.3160480802 · Zbl 0856.35106 · doi:10.1002/cpa.3160480802
[2] DOI: 10.1215/S0012-7094-96-08228-9 · Zbl 0870.58101 · doi:10.1215/S0012-7094-96-08228-9
[3] Doi S., Séminaire Equations aux Dérivées Partielles 1996–1997 (1997)
[4] DOI: 10.1006/jfan.1999.3466 · Zbl 0949.58007 · doi:10.1006/jfan.1999.3466
[5] Doi S., Grad. Ser. Anul., in: Hyperbolic Problems and Related Topics pp 185– (2003)
[6] Hassell A., Partial Differential Equations and Inverse Problems, Contemp. Math. 362 pp 199– (2004) · doi:10.1090/conm/362/06614
[7] DOI: 10.4007/annals.2005.162.487 · Zbl 1126.58016 · doi:10.4007/annals.2005.162.487
[8] Hörmander L., The Analysis of Linear Partial Differential Operators III (1985)
[9] Martinez A., An Introduction to Semiclassical and Microlocal Analysis (2002) · Zbl 0994.35003 · doi:10.1007/978-1-4757-4495-8
[10] DOI: 10.1002/cpa.20112 · Zbl 1122.35027 · doi:10.1002/cpa.20112
[11] Melrose R. B., Spectral and Scattering Theory pp 85– (1994)
[12] Nakamura S., Wave Front Set for Solutions to Schrödinger Equations (2004)
[13] DOI: 10.1215/S0012-7094-04-12625-9 · Zbl 1130.35023 · doi:10.1215/S0012-7094-04-12625-9
[14] DOI: 10.1215/S0012-7094-99-10003-2 · Zbl 0941.35014 · doi:10.1215/S0012-7094-99-10003-2
[15] DOI: 10.1080/03605300008821571 · Zbl 0959.35007 · doi:10.1080/03605300008821571
[16] Robbiano L., Soc. Math. France, Astérisque 283 pp 1– (2002)
[17] DOI: 10.1215/S0012-7094-99-09804-6 · Zbl 0953.35121 · doi:10.1215/S0012-7094-99-09804-6
[18] DOI: 10.1007/BF02101289 · Zbl 0883.35022 · doi:10.1007/BF02101289
[19] DOI: 10.1142/S0129055X01000910 · Zbl 1030.35003 · doi:10.1142/S0129055X01000910
[20] DOI: 10.1007/BF01209385 · Zbl 0554.35031 · doi:10.1007/BF01209385
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.