×

Fuzzy bounces. (English) Zbl 07870474

Summary: We observe that the energy and the enthalpy densities can be smeared by two fudge factors that are constrained by the contracted Bianchi identities. Depending on the analytic properties of the smearing functions the underlying cosmological solutions belong to two physically different classes, namely the bounces of the scale factor and the curvature bounces. While the curvature bounces are naturally compatible with a stage of accelerated expansion, the bounces of the scale factor demand an early phase of accelerated contraction even if a short inflationary stage may arise prior to the decelerated regime. Despite the regularity of the underlying solutions, gradient instabilities and singularities do occasionally appear in the evolution of curvature inhomogeneities. After deducing the specific criteria behind these occurrences, the background-independent conclusions are corroborated by a series of concrete examples associated with different forms of the smearing functions. The evolution of the curvature inhomogeneities restricts the ranges of the solutions that turn out to be unsuitable even for a limited description of the pre-inflationary initial data. The same observation holds in the case of the gauge-invariant evolution of the matter density contrast. It is however not excluded that a class of scenarios (mainly associated with the curvature bounces) could indeed avoid the potential instabilities. All in all the present analysis explores a general approach whose results are relevant in all the contexts where bouncing solutions are invoked either as complementary or as alternative to the conventional inflationary scenarios.
{© 2024 The Author(s). Published by IOP Publishing Ltd}

MSC:

83F05 Relativistic cosmology

References:

[1] Spergel, D. N., Astrophys. J. Suppl., 148, 175, 2003 · doi:10.1086/377226
[2] Page, L., Astrophys. J. Suppl., 170, 335, 2007 · doi:10.1086/513699
[3] Bennett, C. L., Astrophys. J. Suppl., 208, 20, 2013 · doi:10.1088/0067-0049/208/2/20
[4] Aghanim, N., Astron. Astrophys., 641, A6, 2020 · doi:10.1051/0004-6361/201833910
[5] Ade, P. A R., Phys. Rev. Lett., 127, 2021 · doi:10.1103/PhysRevLett.127.151301
[6] Starobinsky, A. A., Phys. Lett. B, 91, 99, 1980 · Zbl 1371.83222 · doi:10.1016/0370-2693(80)90670-X
[7] Guth, A. H., Phys. Rev. D, 23, 347, 1981 · Zbl 1371.83202 · doi:10.1103/PhysRevD.23.347
[8] Linde, A. D., Phys. Lett. B, 108, 389, 1982 · doi:10.1016/0370-2693(82)91219-9
[9] Albrecht, A.; Steinhardt, P. J., Phys. Rev. Lett., 48, 1220, 1982 · doi:10.1103/PhysRevLett.48.1220
[10] Weinberg, S., Cosmology, 2008, Oxford University Press · Zbl 1147.83002
[11] Peebles, P. J E., Principles of Physical Cosmology, 1993, Princeton University Press · Zbl 1422.83022
[12] Peebles, P. J E.; Yu, J. T., Astrophys. J., 162, 815, 1970 · doi:10.1086/150713
[13] Steinhardt, P. J., Sci. Am., 304, 18, 2011 · doi:10.1038/scientificamerican0411-36
[14] Ijjasa, A.; Steinhardt, P.; Loeb, A., Phys. Lett. B, 723, 261, 2013 · doi:10.1016/j.physletb.2013.05.023
[15] Salopek, D. S.; Stewart, J. M., Class. Quantum Grav., 9, 1943, 1992 · doi:10.1088/0264-9381/9/8/015
[16] Deruelle, N.; Tomita, K., Phys. Rev. D, 50, 7216, 1994 · doi:10.1103/PhysRevD.50.7216
[17] Giovannini, M., Phys. Lett. B, 746, 159, 2015 · Zbl 1343.83055 · doi:10.1016/j.physletb.2015.04.071
[18] Giovannini, M., Phys. Rev. D, 108, 2023 · doi:10.1103/PhysRevD.108.123508
[19] Giovannini, M., Eur. Phys. J. C, 84, 67, 2024 · doi:10.1140/epjc/s10052-024-12419-z
[20] Boubekeur, L.; Lyth, D. H., J. Cosmol. Astropart. Phys., JCAP07(2005)010, 2005 · doi:10.1088/1475-7516/2005/07/010
[21] Stein, N. K.; Kinney, W. H., J. Cosmol. Astropart. Phys., JCAP03(2023)027, 2023 · Zbl 1522.83308 · doi:10.1088/1475-7516/2023/03/027
[22] Motohashi, H.; Starobinsky, A. A., J. Cosmol. Astropart. Phys., JCAP11(2019)025, 2019 · Zbl 1543.83222 · doi:10.1088/1475-7516/2019/11/025
[23] Guerrero, M.; Rubiera-Garcia, D.; Saez-Chillon Gomez, D., Phys. Rev. D, 102, 2020 · doi:10.1103/PhysRevD.102.123528
[24] Mohammadi, A.; Golanbari, T.; Nasri, S.; Saaidi, K., Phys. Rev. D, 101, 2020 · doi:10.1103/PhysRevD.101.123537
[25] Giovannini, M., Prog. Part. Nucl. Phys., 112, 2020 · doi:10.1016/j.ppnp.2020.103774
[26] Brandenberger, R., J. Cosmol. Astropart. Phys., JCAP11(2023)019, 2023 · Zbl 1534.83116 · doi:10.1088/1475-7516/2023/11/019
[27] Rubakov, V A2014Phys. - Usp.57128; Rubakov, V A2014Usp. Fiz. Nauk184137
[28] Ashtekar, A.; Singh, P., Class. Quantum Grav., 28, 2011 · Zbl 1230.83003 · doi:10.1088/0264-9381/28/21/213001
[29] Novello, M.; Bergliaffa, S. E P., Phys. Rep., 463, 127, 2008 · doi:10.1016/j.physrep.2008.04.006
[30] Tolman, C., Phys. Rev., 38, 1758, 1931 · Zbl 0003.18002 · doi:10.1103/PhysRev.38.1758
[31] Lemaitre, G., Ann. Soc. Sci. Brux. A, 53, 51, 1933 · Zbl 0007.33104
[32] Parker, L.; Fulling, S. A., Phys. Rev. D, 7, 2357, 1973 · doi:10.1103/PhysRevD.7.2357
[33] Starobinsky, A A1978Sov. Astron. Lett.482; Starobinsky, A A1978Pis’ma Astron. Zh.4155
[34] Nariai, H., Prog. Theor. Phys., 46, 433, 1971 · doi:10.1143/PTP.46.433
[35] Bhardwaj, A.; Copeland, E. J.; Louko, J., Phys. Rev. D, 99, 2019 · doi:10.1103/PhysRevD.99.063520
[36] Bonga, B.; Gupt, B., Gen. Rel. Grav., 48, 71, 2016 · Zbl 1386.83057 · doi:10.1007/s10714-016-2071-0
[37] de Groot, S. R.; van Leeuwen, V. A.; van Weert, C. G., Relativistic Kinetic Theory, 1980, North-Holland
[38] Landau, L. D.; Lifshitz, E. M., The Classical Theory of Fields, 1971, Pergamon
[39] Weinberg, S., Gravitation and Cosmology, 1972, Wiley
[40] Weinberg, S., Phys. Rev. D, 67, 2003 · doi:10.1103/PhysRevD.67.123504
[41] Weinberg, S., Phys. Rev. D, 70, 2004 · doi:10.1103/PhysRevD.70.083522
[42] Giovannini, M., A Primer on the Physics of the Cosmic Microwave Background, 2008, World Scientific · Zbl 1166.85001
[43] Bardeen, J., Phys. Rev. D, 22, 1882, 1980 · doi:10.1103/PhysRevD.22.1882
[44] Stewart, J. M.; Walker, M., Proc. R. Soc. A, 341, 49, 1974 · doi:10.1098/rspa.1974.0172
[45] Lukash, V N1980Sov. Phys. - JETP52807; Lukash, V N1980Zh. Eksp. Teor. Fiz.791601
[46] Strokov, V., Astron. Rep., 51, 431, 2007 · doi:10.1134/S1063772907060017
[47] Lukash, V. N.; Novikov, I. D.; Sanchez, F.; Collados, M.; Rebolo, R., Observational and Physical Cosmology, II Canary Islands Winter School of Astrophysics, p 3, 1992, Cambridge University Press
[48] Lyth, D. H., Phys. Rev. D, 31, 1792, 1985 · doi:10.1103/PhysRevD.31.1792
[49] Sasaki, M., Prog. Theor. Phys., 76, 1036, 1986 · doi:10.1143/PTP.76.1036
[50] Giovannini, M., Phys. Rev. D, 95, 2017 · doi:10.1103/PhysRevD.95.083506
[51] Giovannini, M., Phys. Rev. D, 70, 2004 · doi:10.1103/PhysRevD.70.103509
[52] Giovannini, M., Class. Quantum Grav., 21, 4209, 2004 · Zbl 1061.83075 · doi:10.1088/0264-9381/21/17/010
[53] Gasperini, M.; Giovannini, M.; Veneziano, G., Nucl. Phys. B, 694, 206, 2004 · Zbl 1151.83370 · doi:10.1016/j.nuclphysb.2004.06.020
[54] Giovannini, M., Class. Quantum Grav., 23, 4991, 2006 · Zbl 1096.85506 · doi:10.1088/0264-9381/23/15/017
[55] Enqvist, K.; Kurki-Suonio, H.; Valiviita, J., Phys. Rev. D, 62, 2000 · doi:10.1103/PhysRevD.62.103003
[56] Valiviita, J.; Muhonen, V., Phys. Rev. Lett., 91, 2003 · doi:10.1103/PhysRevLett.91.131302
[57] Kurki-Suonio, H.; Muhonen, V.; Valiviita, J., Phys. Rev. D, 71, 2005 · doi:10.1103/PhysRevD.71.063005
[58] Keskitalo, R.; Kurki-Suonio, H.; Muhonen, V.; Valiviita, J., J. Cosmol. Astropart. Phys., JCAP09(2007)008, 2007 · doi:10.1088/1475-7516/2007/09/008
[59] Spergel, D. N., Astrophys. J. Suppl., 170, 377, 2007 · doi:10.1086/513700
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.