×

Elliptic problems in \(\mathbb R^N\) with critical and singular discontinuous nonlinearities. (English) Zbl 1347.35099

The authors are concerned with the problem \(-\Delta u=\lambda(u^{2^\ast-1}+\chi_{\{u<a\}}u^{-\delta})\) in \(\Omega\), subject to homogeneous Dirichlet boundary condition. Here \(\Omega\subset\mathbb{R}^N\), \(N\geq 3\), is a smooth and bounded domain, \(\delta\in (0,3)\), \(a>0\), \(\lambda>0\). The main result of the paper establishes that for any \(a>0\), there exists \(\Lambda^a>0\) such that the above problem has no solutions for \(\lambda>\Lambda^a\) while for \(\lambda\in (0,\Lambda^a)\) the problem possesses at least two solutions.

MSC:

35J20 Variational methods for second-order elliptic equations
35J60 Nonlinear elliptic equations

References:

[1] DOI: 10.1007/978-3-662-02624-3 · doi:10.1007/978-3-662-02624-3
[2] DOI: 10.1002/cpa.3160330203 · Zbl 0405.35074 · doi:10.1002/cpa.3160330203
[3] Chang KC, Sci. Sin 21 pp 139– (1978)
[4] DOI: 10.1080/03605307708820029 · Zbl 0362.35031 · doi:10.1080/03605307708820029
[5] Dhanya R, Adv. Differ. Equ 17 pp 369– (2012)
[6] Dhanya R, Adv. Differ. Equ 19 pp 409– (2014)
[7] DOI: 10.1080/03605308708820531 · Zbl 0634.35031 · doi:10.1080/03605308708820531
[8] Ghergu M, Singular elliptic problems : bifurcation and asymptotic analysis (2008) · Zbl 1159.35030
[9] DOI: 10.1016/j.na.2009.02.087 · Zbl 1175.35066 · doi:10.1016/j.na.2009.02.087
[10] DOI: 10.1016/j.na.2004.11.024 · Zbl 1387.35232 · doi:10.1016/j.na.2004.11.024
[11] DOI: 10.1016/j.jde.2008.06.020 · Zbl 1158.35044 · doi:10.1016/j.jde.2008.06.020
[12] DOI: 10.1006/jfan.1994.1078 · Zbl 0805.35028 · doi:10.1006/jfan.1994.1078
[13] DOI: 10.1016/S0022-0396(02)00098-0 · Zbl 1034.35038 · doi:10.1016/S0022-0396(02)00098-0
[14] Hirano N, Adv. Differ. Equ 9 pp 197– (2004)
[15] DOI: 10.1142/S0219199706002222 · Zbl 1202.35087 · doi:10.1142/S0219199706002222
[16] Alves CO, Electron. J. Differ. Equ 2003 pp 1– (2003)
[17] DOI: 10.1016/S0362-546X(96)00071-5 · Zbl 0877.35046 · doi:10.1016/S0362-546X(96)00071-5
[18] DOI: 10.1016/S0362-546X(01)00869-0 · Zbl 1010.35045 · doi:10.1016/S0362-546X(01)00869-0
[19] DOI: 10.1007/s00030-013-0232-3 · Zbl 1287.35042 · doi:10.1007/s00030-013-0232-3
[20] DOI: 10.1016/0022-247X(81)90095-0 · Zbl 0487.49027 · doi:10.1016/0022-247X(81)90095-0
[21] DOI: 10.1090/S0002-9947-1975-0367131-6 · doi:10.1090/S0002-9947-1975-0367131-6
[22] Brezis H, C. R. Acad. Sci. Paris Sr. I Math 317 pp 465– (1993)
[23] DOI: 10.2307/2044999 · Zbl 0526.46037 · doi:10.2307/2044999
[24] DOI: 10.1002/cpa.3160360405 · Zbl 0541.35029 · doi:10.1002/cpa.3160360405
[25] Brezis H, Scuola Norm. Sup. Pisa pp 129– (1989)
[26] Tarantello G, Ann. Inst. H. Poincaré Analyse non Lineaire 9 pp 281– (1992) · Zbl 0785.35046 · doi:10.1016/S0294-1449(16)30238-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.