×

Reduction of discrete element models by Karhunen-Loève transform: a hybrid model approach. (English) Zbl 1362.74038

Summary: The term “discrete element method” (DEM) in engineering science comprises various approaches to model physical systems by agglomerates of free particles. While shapes, sizes and properties of particles may vary, in most DEM models, particles are not confined by constraints, but subject to applied forces derived from potential fields and/or contact laws. This general approach allows for widespread use of DEM models for physical phenomena including gas dynamics, granular flow, fracture and impact analysis. However, its characteristic feature, combining particle restraints and forces into applied forces, does not only provide for flexible adaption of DEM to different physics, but also creates the most limiting restriction: Evaluation of the applied forces for each particle is computational expensive restraining the time sequence and sample size for numerical analyses. As an ansatz to circumvent this obstacle for a class of DEM models, we propose a model order reduction method based on coherency in the dynamics of particles. While initial flexibility of DEM is conserved, computational effort can be reduced significantly.

MSC:

74S99 Numerical and other methods in solid mechanics

References:

[1] Cundall PA (1971) A computer model for simulation of progressive, large-scale movements in blocky rock. In: Proceedings of the ISRM-Symposium, Nancy, France 2: 129–136
[2] Schwager T, Pöschel T (2003) Rigid body dynamics of railway ballast. In: Popp K, Schiehlen W (eds) System dynamics and long-term behaviour of railway vehicles track and subgrade. Springer, Berlin, pp 451–470
[3] Karrech A, Duhamel D, Bonnet G et al (2007) A computational procedure for the prediction of settlement in granular materials under cyclic loading. Comput Methods Appl Mech Eng 197(1–4): 80–94 · Zbl 1169.74368 · doi:10.1016/j.cma.2007.07.011
[4] Lobo-Guerrero S, Vallejo LE (2007) Influence of pile shape and pile interaction on the crushable behavior of granular materials around driven piles: DEM analyses. Granular Matter 9(3): 241–250 · doi:10.1007/s10035-007-0037-3
[5] D’Addetta GA, Kun F, Ramm E (2002) On the application of a discrete model to the fracture process of cohesive granular materials. Granular Matter 4(2): 77–90 · Zbl 1074.74633 · doi:10.1007/s10035-002-0103-9
[6] Egholm DL (2007) A new strategy for discrete element numerical models: 1. Theory J Geophys Res 112: B05203 · doi:10.1029/2006JB004557
[7] Vesga LF, Vallejo LE, Lobo-Guerrero S (2008) DEM analysis of the crack propagation in brittle clays under uniaxial compression tests. Int J Numer Anal Methods Geomech 32(11): 1405–1415 · Zbl 1273.74570 · doi:10.1002/nag.665
[8] Alkhaldi H, Eberhard P (2007) Particle screening phenomena in an oblique multi-level tumbling reservoir: a numerical study using discrete element simulation. Granular Matter 9(6): 415–429 · Zbl 1200.74024 · doi:10.1007/s10035-007-0042-6
[9] Sykut J, Molenda M, Horabik J (2008) DEM simulation of the packing structure and wall load in a 2-dimensional silo. Granular Matter 10(4): 273–278 · Zbl 1304.74020 · doi:10.1007/s10035-008-0089-z
[10] Tano KT, Pålsson BI (2008) Assessment of mill lifter bar deflection measurements using wavelets and discrete element methods. Granular Matter 10(4): 279–283 · doi:10.1007/s10035-008-0087-1
[11] Fleissner F, Gaugele T, Eberhard P (2007) Applications of the discrete element method in mechanical engineering. Multibody Syst Dyn 18(1): 81–94 · Zbl 1124.70001 · doi:10.1007/s11044-007-9066-2
[12] Zang MY, Lei Z, Wang SF (2007) Investigation of impact fracture behavior of automobile laminated glass by 3D discrete element method. Comput Mech 41(1): 73–83 · Zbl 1162.74444 · doi:10.1007/s00466-007-0170-1
[13] Wang G, Ostoja-Starzewski M, Radziszewski P et al (2006) Particle modeling of dynamic fragmentation. II. Fracture in single- and multi-phase materials. Comput Mater Sci 35(2): 116–133 · doi:10.1016/j.commatsci.2005.03.011
[14] Carmona HA, Kun F, Andrade JS et al (2007) Computer simulation of fatigue under diametrical compression. Phys Rev E 75: 046115 · doi:10.1103/PhysRevE.75.046115
[15] Kim H, Wagoner MP, Buttlar WG (2008) Simulation of fracture behavior in asphalt concrete using a heterogeneous cohesive zone discrete element model. J Mater Civil Eng 20: 552–563 · doi:10.1061/(ASCE)0899-1561(2008)20:8(552)
[16] Iordanoff I, Battentier A, Neauport J et al (2008) A discrete element model to investigate sub-surface damage due to surface polishing. Tribol Int 41(11): 957–964 · doi:10.1016/j.triboint.2008.02.018
[17] Meguro K, Tagel-Din HS (2002) Applied element method used for large displacement structural analysis. J Nat Deasaster Sci 24(1): 25–34
[18] Raje N, Sadeghi F, Rateick RG (2007) A discrete element approach to evaluate stresses due to line loading on an elastic half-space. Comput Mech 40(3): 513–529 · Zbl 1160.74052 · doi:10.1007/s00466-006-0120-3
[19] Liu WK, Karpov EG, Zhang S et al (2004) An introduction to computational nanomechanics and materials. Comput Methods Appl Mech Eng 193: 1529–1578 · Zbl 1079.74506 · doi:10.1016/j.cma.2003.12.008
[20] Tavarez FA, Plesha ME (2007) Discrete element method for modelling solid and particulate materials. Int J Numer Methods Eng 70(4): 379–404 · Zbl 1194.74539 · doi:10.1002/nme.1881
[21] Azevedo NM, Lemos JV (2006) Hybrid discrete element/finite element method for fracture analysis. Comput Methods Appl Mech Eng 195(33–36): 4579–4593 · Zbl 1123.74049 · doi:10.1016/j.cma.2005.10.005
[22] Griebel M, Zumbusch G, Knapek S et al (2007) Numerical simulations in molecular dynamics. Springer, Berlin · Zbl 1131.76001
[23] Pöschel T, Schwager T (2005) Computational granular dynamics. Springer, Berlin
[24] Zohdi TI (2005) Charge-induced clustering in multifield particulate flows. Int J Numer Methods Eng 62(7): 870–898 · Zbl 1161.74355 · doi:10.1002/nme.1194
[25] Meyer M, Matthies HG (2003) Efficient model reduction in non-linear dynamics using the Karhunen–Loève expansion and dual-weighted-residual methods. Comput Mech 31: 179–191 · Zbl 1038.74559 · doi:10.1007/s00466-002-0404-1
[26] Lall S, Krysl P, Marsden JE (2003) Structure-preserving model reduction for mechanical systems. Phys D 184: 304–318 · Zbl 1041.70011 · doi:10.1016/S0167-2789(03)00227-6
[27] Glösmann P, Kreuzer E (2005) Nonlinear system analysis with Karhunen–Loève transform. Nonlinear Dyn 41(1–3): 111–128 · Zbl 1111.70019 · doi:10.1007/s11071-005-2794-z
[28] Wang F, Bajaj AK (2007) Nonlinear normal modes in multi-mode models of an inertially coupled elastic structure. Nonlinear Dyn 47: 25–47 · Zbl 1180.74031 · doi:10.1007/s11071-006-9057-5
[29] Karhunen K (1946) Zur Spektraltheorie stochastischer Prozesse. Ann Acad Sci Fen 34
[30] Sirovich L (1987) Turbulence and the dynamics of coherent structures. Q Appl Math 45(3): 561–582 · Zbl 0676.76047
[31] Glösmann P, Kreuzer E (2009) On the application of Karhunen-Loève transform to transient dynamic systems. J Sound Vib. doi: 10.1016/j.jsv.2009.08.013 · Zbl 1111.70019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.