×

Dimension and measures on sub-self-affine sets. (English) Zbl 1206.28013

The authors study the dimension of a typical so-called sub-self-affine set which extends the self-affine set from the classical case studied by J. Hutchinson, K. J. Falconer and others. In Theorem 5.2 the same result for a typical sub-self-affine set is proved and further, that such a set carries an invariant measure of full Hausdorff dimension as obtained by Falconer for sub-self-similar sets satisfying the open set condition. The proof of Theorem 5.2 is based on the existence of an equilibrium measure (Section 3). The authors study in section 4 some properties of the topological pressure (Theorem 4.4).
The paper is well written and the subject is a very current one. It answers a question of Falconer.

MSC:

28A80 Fractals
28A78 Hausdorff and packing measures
37C45 Dimension theory of smooth dynamical systems

References:

[1] Bandt C.: Self-similar sets. I. Topological Markov chains and mixed self-similar sets. Math. Nachr. 142, 107–123 (1989) · Zbl 0707.28004 · doi:10.1002/mana.19891420107
[2] Barański K.: Hausdorff dimension of the limit sets of some planar geometric constructions. Adv. Math. 210(1), 215–245 (2007) · Zbl 1116.28008 · doi:10.1016/j.aim.2006.06.005
[3] Bauer H.: Measure and integration theory. de Gruyter Studies in Mathematics, vol. 26. Walter de Gruyter & Co., Berlin (2001) · Zbl 0985.28001
[4] Bowen, R.: Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture notes in mathematics, vol. 470 (1975) · Zbl 0308.28010
[5] Cao Y.-L., Feng D.-J., Huang W.: The thermodynamic formalism for sub-additive potentials. Discrete Contin. Dyn. Syst. 20(3), 639–657 (2008) · Zbl 1140.37319
[6] Cholewa P.W.: Remarks on the stability of functional equations. Aequationes Math. 27(1), 76–86 (1984) · Zbl 0549.39006 · doi:10.1007/BF02192660
[7] Falconer K.J.: The Hausdorff dimension of self-affine fractals. Math. Proc. Cambridge Philos. Soc. 103(2), 339–350 (1988) · Zbl 0642.28005 · doi:10.1017/S0305004100064926
[8] Falconer K.J.: The dimension of self-affine fractals II. Math. Proc. Cambridge Philos. Soc. 111(1), 169–179 (1992) · Zbl 0797.28004 · doi:10.1017/S0305004100075253
[9] Falconer K.J.: Bounded distortion and dimension for nonconformal repellers. Math. Proc. Cambridge Philos. Soc. 115(2), 315–334 (1994) · Zbl 0808.58028 · doi:10.1017/S030500410007211X
[10] Falconer K.J.: Sub-self-similar sets. Trans. Am. Math. Soc. 347(8), 3121–3129 (1995) · Zbl 0844.28005 · doi:10.2307/2154776
[11] Falconer K.J.: Techniques in Fractal Geometry. Wiley, England (1997) · Zbl 0869.28003
[12] Falconer K.J., Miao J.: Dimensions of self-affine fractals and multifractals generated by upper- triangular matrices. Fractals 15(3), 289–299 (2007) · Zbl 1137.28302 · doi:10.1142/S0218348X07003587
[13] Feng, D.-J., Käenmäki, A.: Equilibrium states for the pressure function for products of matrices (2009, in preparation)
[14] Feng D.-J., Lau K.-S.: The pressure function for products of non-negative matrices. Math. Res. Lett. 9(2), 363–378 (2002) · Zbl 1116.37302
[15] Heurteaux Y.: Estimations de la dimension inférieure et de la dimension supérieure des mesures. Ann. Inst. H. Poincaré Probab. Stat. 34(3), 309–338 (1998) · Zbl 0903.28005 · doi:10.1016/S0246-0203(98)80014-9
[16] Hueter I., Lalley S.P.: Falconer’s formula for the Hausdorff dimension of a self-affine set in \({\mathbb{R}^{2}}\) . Ergod. Theory Dyn. Syst. 15(1), 77–97 (1995) · Zbl 0867.28006 · doi:10.1017/S0143385700008257
[17] Hutchinson J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30(5), 713–747 (1981) · Zbl 0598.28011 · doi:10.1512/iumj.1981.30.30055
[18] Jordan T., Pollicott M., Simon K.: Hausdorff dimension for randomly perturbed self-affine attractors. Comm. Math. Phys. 270(2), 519–544 (2007) · Zbl 1119.28004 · doi:10.1007/s00220-006-0161-7
[19] Käenmäki A.: On natural invariant measures on generalised iterated function systems. Ann. Acad. Sci. Fenn. Math. 29(2), 419–458 (2004) · Zbl 1078.37014
[20] Käenmäki A., Shmerkin P.: Overlapping self-affine sets of Kakeya type. Ergod. Theory Dyn. Syst. 29(3), 941–965 (2009) · Zbl 1173.28004 · doi:10.1017/S0143385708080474
[21] Käenmäki A., Vilppolainen M.: Separation conditions on controlled Moran constructions. Fund. Math. 200(1), 69–100 (2008) · Zbl 1148.28007 · doi:10.4064/fm200-1-2
[22] Mattila P.: Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability. Cambridge University Press, Cambridge (1995) · Zbl 0819.28004
[23] Phelps R.R.: Lectures on Choquet’s Theorem. D. Van Nostrand Co., Inc., N.J.-Toronto, Ont.-London (1966) · Zbl 0135.36203
[24] Rams M.: Measures of maximal dimension for linear horseshoes. Real Anal. Exchange 31(1), 55–62 (2005/2006) · Zbl 1096.37013
[25] Rockafellar R.T.: Convex Analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton (1970) · Zbl 0193.18401
[26] Steele J.M.: Kingman’s subadditive ergodic theorem. Ann. Inst. H. Poincaré Probab. Stat. 25(1), 93–98 (1989) · Zbl 0669.60039
[27] Stein E.M., Shakarchi R.: Real analysis. Measure theory, integration, and Hilbert spaces. Princeton Lectures in Analysis, III. Princeton University Press, Princeton (2005) · Zbl 1081.28001
[28] Temam R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1988) · Zbl 0662.35001
[29] Walters P.: An Introduction to Ergodic Theory. Springer, New York (1982) · Zbl 0475.28009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.