×

Shape reconstruction from images: pixel fields and Fourier transform. (English) Zbl 1302.68301

Summary: We discuss shape reconstruction methods for data presented in various image spaces. We demonstrate the usefulness of the Fourier transform in transferring image data and shape model projections to a domain more suitable for shape inversion. Using boundary contours in images to represent minimal information, we present uniqueness results for shapes recoverable from interferometric and range-Doppler data. We present applications of our methods to adaptive optics, interferometry, and range-Doppler images.

MSC:

68U10 Computing methodologies for image processing
68T45 Machine vision and scene understanding
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
52B10 Three-dimensional polytopes
49N45 Inverse problems in optimal control
65J22 Numerical solution to inverse problems in abstract spaces
85-08 Computational methods for problems pertaining to astronomy and astrophysics
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory

References:

[1] B. Bertotti, <em>Physics of the Solar System</em>,, Astrophysics and Space Science Library (Kluwer), 293 (2003) · doi:10.1007/978-94-010-0233-2
[2] B. Carry, Physical properties of 2 Pallas,, Icarus, 205, 460 (2010) · doi:10.1016/j.icarus.2009.08.007
[3] B. Carry, Shape modeling technique KOALA validated by ESA Rosetta at (21) Lutetia,, Planet. Space Sci., 66, 200 (2012) · doi:10.1016/j.pss.2011.12.018
[4] M. Delbó, <em>The Nature of Near-Earth Asteroids from the Study of Their Thermal Infrared Emission</em>,, Ph.D. thesis (2004)
[5] M. Kaasalainen, Interpretation of lightcurves of atmosphereless bodies. I. General theory and new inversion schemes,, Astron. Astrophys., 259, 318 (1992)
[6] M. Kaasalainen, Optimization methpds for asteroid lightcurves inversion. II. The complete inverse problem,, Icarus, 153, 37 (2001) · doi:10.1006/icar.2001.6674
[7] M. Kaasalainen, Inverse problems of generalized projection operators,, Inverse Problems, 22, 749 (2006) · Zbl 1095.44003 · doi:10.1088/0266-5611/22/3/002
[8] M. Kaasalainen, Multimodal inverse problems: Maximum compatibility estimate and shape reconstruction,, Inverse Problems and Imaging, 5, 37 (2011) · Zbl 1217.68228 · doi:10.3934/ipi.2011.5.37
[9] M. Kaasalainen, Shape reconstruction of irregular bodies with multiple complementary data sources,, Astron. Astrophys, 543 (2012) · doi:10.1051/0004-6361/201219267
[10] M. Kaasalainen, Compact YORP formulation and stability analysis,, Astron. Astrophys, 558 (2013) · doi:10.1051/0004-6361/201322221
[11] D. Nesvorný, Analytic theory for the Yarkovsky-O’Keefe-Radzievski-Paddack effect on obliquity,, Astron. J., 136, 291 (2008) · doi:10.1088/0004-6256/136/1/291
[12] S. J. Ostro, <em>Asteroid Radar Astronomy</em>,, in Asteroids III (2002)
[13] A. R. Thompson, <em>Interferometry and Synthesis in Radio Astronomy</em>,, Interferometry and Synthesis in Radio Astronomy (2007) · doi:10.1002/9783527617845
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.